Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321608114> ?p ?o ?g. }
- W4321608114 endingPage "12536" @default.
- W4321608114 startingPage "12521" @default.
- W4321608114 abstract "With the widespread of cyber attacks, network intrusion detection system (NIDS) is becoming an important and essential tool to protect Internet of Things (IoT) environments. However, it is well known that the NIDS performance depends heavily on the effectiveness of the detection model, which can be influenced significantly by the learning mechanism and the available training data. Many existing studies try to mitigate the above challenges, but few of them consider the adaptability and the cost of deploying an NIDS, the integrity of the learning process, the capacity of model based on concrete traffic samples at the same time. To fill this gap and improve the detection performance, we propose a collaborative learning-based detection framework called ADCL, which can mitigate the limitations on the knowledge of a single model by leveraging multiple models trained in similar environments and detecting intrusions in a collaborative manner. Our evaluation results indicate that ADCL can provide better performance compared with a single model on detecting various attacks in IoT networks. Specifically, ADCL improves F-score by up to 80% for adaptability, 42% in mitigating the reliance on learning integrity, 85% for model capacity. Furthermore, the detection results of ADCL guide those single models to update and increase the F-score by 15%." @default.
- W4321608114 created "2023-02-24" @default.
- W4321608114 creator A5005298264 @default.
- W4321608114 creator A5027355692 @default.
- W4321608114 creator A5051580036 @default.
- W4321608114 creator A5061910468 @default.
- W4321608114 creator A5077291880 @default.
- W4321608114 creator A5085755018 @default.
- W4321608114 date "2023-07-15" @default.
- W4321608114 modified "2023-10-07" @default.
- W4321608114 title "ADCL: Toward an Adaptive Network Intrusion Detection System Using Collaborative Learning in IoT Networks" @default.
- W4321608114 cites W2099940443 @default.
- W4321608114 cites W2296509296 @default.
- W4321608114 cites W2751702912 @default.
- W4321608114 cites W2892556724 @default.
- W4321608114 cites W2945594226 @default.
- W4321608114 cites W2946427082 @default.
- W4321608114 cites W2947334153 @default.
- W4321608114 cites W2949830777 @default.
- W4321608114 cites W2963197901 @default.
- W4321608114 cites W2965378538 @default.
- W4321608114 cites W2997442262 @default.
- W4321608114 cites W3006903471 @default.
- W4321608114 cites W3014732532 @default.
- W4321608114 cites W3021219025 @default.
- W4321608114 cites W3022604549 @default.
- W4321608114 cites W3026481078 @default.
- W4321608114 cites W3047845857 @default.
- W4321608114 cites W3106312933 @default.
- W4321608114 cites W3108785997 @default.
- W4321608114 cites W3118220620 @default.
- W4321608114 cites W3131438039 @default.
- W4321608114 cites W3138381676 @default.
- W4321608114 cites W3157680283 @default.
- W4321608114 cites W3162352308 @default.
- W4321608114 cites W3163301462 @default.
- W4321608114 cites W3179054875 @default.
- W4321608114 cites W3201617817 @default.
- W4321608114 cites W3201640968 @default.
- W4321608114 cites W3202083238 @default.
- W4321608114 cites W3204162860 @default.
- W4321608114 cites W3206674745 @default.
- W4321608114 cites W3208773001 @default.
- W4321608114 cites W3212280553 @default.
- W4321608114 cites W3213574824 @default.
- W4321608114 cites W3215575541 @default.
- W4321608114 cites W4214819121 @default.
- W4321608114 cites W4220747501 @default.
- W4321608114 cites W4220810976 @default.
- W4321608114 cites W4220912180 @default.
- W4321608114 cites W4224331011 @default.
- W4321608114 cites W4225014873 @default.
- W4321608114 cites W4225622006 @default.
- W4321608114 cites W4226050909 @default.
- W4321608114 cites W4226125749 @default.
- W4321608114 cites W4281397870 @default.
- W4321608114 cites W4285138763 @default.
- W4321608114 cites W4285157251 @default.
- W4321608114 cites W4285199572 @default.
- W4321608114 cites W4293208285 @default.
- W4321608114 cites W4293879918 @default.
- W4321608114 cites W4296268039 @default.
- W4321608114 cites W4315630101 @default.
- W4321608114 cites W3153597313 @default.
- W4321608114 doi "https://doi.org/10.1109/jiot.2023.3248259" @default.
- W4321608114 hasPublicationYear "2023" @default.
- W4321608114 type Work @default.
- W4321608114 citedByCount "0" @default.
- W4321608114 crossrefType "journal-article" @default.
- W4321608114 hasAuthorship W4321608114A5005298264 @default.
- W4321608114 hasAuthorship W4321608114A5027355692 @default.
- W4321608114 hasAuthorship W4321608114A5051580036 @default.
- W4321608114 hasAuthorship W4321608114A5061910468 @default.
- W4321608114 hasAuthorship W4321608114A5077291880 @default.
- W4321608114 hasAuthorship W4321608114A5085755018 @default.
- W4321608114 hasConcept C111919701 @default.
- W4321608114 hasConcept C119857082 @default.
- W4321608114 hasConcept C124101348 @default.
- W4321608114 hasConcept C154945302 @default.
- W4321608114 hasConcept C177606310 @default.
- W4321608114 hasConcept C18903297 @default.
- W4321608114 hasConcept C35525427 @default.
- W4321608114 hasConcept C38652104 @default.
- W4321608114 hasConcept C41008148 @default.
- W4321608114 hasConcept C81860439 @default.
- W4321608114 hasConcept C86803240 @default.
- W4321608114 hasConcept C98045186 @default.
- W4321608114 hasConceptScore W4321608114C111919701 @default.
- W4321608114 hasConceptScore W4321608114C119857082 @default.
- W4321608114 hasConceptScore W4321608114C124101348 @default.
- W4321608114 hasConceptScore W4321608114C154945302 @default.
- W4321608114 hasConceptScore W4321608114C177606310 @default.
- W4321608114 hasConceptScore W4321608114C18903297 @default.
- W4321608114 hasConceptScore W4321608114C35525427 @default.
- W4321608114 hasConceptScore W4321608114C38652104 @default.
- W4321608114 hasConceptScore W4321608114C41008148 @default.
- W4321608114 hasConceptScore W4321608114C81860439 @default.
- W4321608114 hasConceptScore W4321608114C86803240 @default.