Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321609022> ?p ?o ?g. }
- W4321609022 endingPage "3610" @default.
- W4321609022 startingPage "3599" @default.
- W4321609022 abstract "Landslide mapping (LM) from bitemporal remote sensing images is essential for disaster prevention and mitigation. Bitemporal change detection technology has been applied for LM, however, there remains room for improvement in its accuracy and automation. In this paper, a multi-level feature enhancement network (MFENet) is proposed for LM based on modules built in convolutional neural network (CNN) like CNN-Attention. MFENet mainly consists of three modules: post-event feature enhancement module (PFEM), bi-feature difference enhancement module (BFDEM) and flow direction calibration module (FDCM). Specifically, the main role of PFEM selectively fuses post-event multi-layer features to provide discriminative post-event features. BFDEM fuses the multi-layer differences of both pre-event and post-event features to generate high-quality change detection features, sufficiently powerful to distinguish foreground from background. FDCM uses a digital elevation model (DEM) to calibrate the flow direction of each pixel of the landslide detection results to complete the LM task. Experiments were conducted to test the effectiveness of MFENet on two real-world regions, Lantau Island and Sharp Peak, Hong Kong, in which landslides occurred after rainstorms. Compared with other state-of-the-art general change detection methods and landslide-specific change detection methods, the proposed method outperforms on all metrics with its intersection over union (IoU) reaching 87.23%. The availability of additional features and the generalization performance of MFENet are demonstrated experimentally. It is anticipated that the proposed network will further contribute to disaster prevention and mitigation." @default.
- W4321609022 created "2023-02-24" @default.
- W4321609022 creator A5012727269 @default.
- W4321609022 creator A5032012144 @default.
- W4321609022 creator A5032105162 @default.
- W4321609022 creator A5065747033 @default.
- W4321609022 date "2023-01-01" @default.
- W4321609022 modified "2023-09-30" @default.
- W4321609022 title "Landslide Mapping Using Multilevel-Feature-Enhancement Change Detection Network" @default.
- W4321609022 cites W1975382649 @default.
- W4321609022 cites W2012089683 @default.
- W4321609022 cites W2024106491 @default.
- W4321609022 cites W2058082754 @default.
- W4321609022 cites W2132083787 @default.
- W4321609022 cites W2132222679 @default.
- W4321609022 cites W2133665775 @default.
- W4321609022 cites W2142347478 @default.
- W4321609022 cites W2144552105 @default.
- W4321609022 cites W2167507651 @default.
- W4321609022 cites W2172220975 @default.
- W4321609022 cites W2194775991 @default.
- W4321609022 cites W2412588858 @default.
- W4321609022 cites W2509507403 @default.
- W4321609022 cites W2530415363 @default.
- W4321609022 cites W2567150323 @default.
- W4321609022 cites W2751000232 @default.
- W4321609022 cites W2752782242 @default.
- W4321609022 cites W2780861787 @default.
- W4321609022 cites W2790230321 @default.
- W4321609022 cites W2792546905 @default.
- W4321609022 cites W2800289446 @default.
- W4321609022 cites W2908624219 @default.
- W4321609022 cites W2934708281 @default.
- W4321609022 cites W2954332586 @default.
- W4321609022 cites W2961348656 @default.
- W4321609022 cites W2979417602 @default.
- W4321609022 cites W2980867860 @default.
- W4321609022 cites W3006465720 @default.
- W4321609022 cites W3011692993 @default.
- W4321609022 cites W3012377709 @default.
- W4321609022 cites W3027201985 @default.
- W4321609022 cites W3036453075 @default.
- W4321609022 cites W3037891846 @default.
- W4321609022 cites W3047392236 @default.
- W4321609022 cites W3081064176 @default.
- W4321609022 cites W3097387309 @default.
- W4321609022 cites W4283021778 @default.
- W4321609022 cites W4283163653 @default.
- W4321609022 cites W4294811269 @default.
- W4321609022 doi "https://doi.org/10.1109/jstars.2023.3245062" @default.
- W4321609022 hasPublicationYear "2023" @default.
- W4321609022 type Work @default.
- W4321609022 citedByCount "1" @default.
- W4321609022 countsByYear W43216090222023 @default.
- W4321609022 crossrefType "journal-article" @default.
- W4321609022 hasAuthorship W4321609022A5012727269 @default.
- W4321609022 hasAuthorship W4321609022A5032012144 @default.
- W4321609022 hasAuthorship W4321609022A5032105162 @default.
- W4321609022 hasAuthorship W4321609022A5065747033 @default.
- W4321609022 hasBestOaLocation W43216090221 @default.
- W4321609022 hasConcept C121332964 @default.
- W4321609022 hasConcept C124101348 @default.
- W4321609022 hasConcept C127313418 @default.
- W4321609022 hasConcept C138885662 @default.
- W4321609022 hasConcept C153180895 @default.
- W4321609022 hasConcept C154945302 @default.
- W4321609022 hasConcept C186295008 @default.
- W4321609022 hasConcept C187320778 @default.
- W4321609022 hasConcept C203595873 @default.
- W4321609022 hasConcept C2776401178 @default.
- W4321609022 hasConcept C2779662365 @default.
- W4321609022 hasConcept C41008148 @default.
- W4321609022 hasConcept C41895202 @default.
- W4321609022 hasConcept C52622490 @default.
- W4321609022 hasConcept C62520636 @default.
- W4321609022 hasConcept C62649853 @default.
- W4321609022 hasConcept C97931131 @default.
- W4321609022 hasConceptScore W4321609022C121332964 @default.
- W4321609022 hasConceptScore W4321609022C124101348 @default.
- W4321609022 hasConceptScore W4321609022C127313418 @default.
- W4321609022 hasConceptScore W4321609022C138885662 @default.
- W4321609022 hasConceptScore W4321609022C153180895 @default.
- W4321609022 hasConceptScore W4321609022C154945302 @default.
- W4321609022 hasConceptScore W4321609022C186295008 @default.
- W4321609022 hasConceptScore W4321609022C187320778 @default.
- W4321609022 hasConceptScore W4321609022C203595873 @default.
- W4321609022 hasConceptScore W4321609022C2776401178 @default.
- W4321609022 hasConceptScore W4321609022C2779662365 @default.
- W4321609022 hasConceptScore W4321609022C41008148 @default.
- W4321609022 hasConceptScore W4321609022C41895202 @default.
- W4321609022 hasConceptScore W4321609022C52622490 @default.
- W4321609022 hasConceptScore W4321609022C62520636 @default.
- W4321609022 hasConceptScore W4321609022C62649853 @default.
- W4321609022 hasConceptScore W4321609022C97931131 @default.
- W4321609022 hasFunder F4320322108 @default.
- W4321609022 hasFunder F4320322598 @default.
- W4321609022 hasLocation W43216090221 @default.
- W4321609022 hasOpenAccess W4321609022 @default.