Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321609056> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4321609056 endingPage "540" @default.
- W4321609056 startingPage "533" @default.
- W4321609056 abstract "Formula One (also known as Formula 1 or F1) is the highest class of international auto-racing for single-seater formula racing cars sanctioned by the Fédération International de automobile (FIA). The World Drivers’ Championship, which became the FIA Formula One World Championship in 1981, has been one of the premier forms of racing around the world since its inaugural season in 1950. This article looks at cost-effective alternatives for Formula 1 racing teams interested in data prediction software. In Formula 1 racing, research was undertaken on the current state of data gathering, data analysis or prediction, and data interpretation. It was discovered that a big portion of the league’s racing firms require a cheap, effective, and automated data interpretation solution. As the need for faster and more powerful software grows in Formula 1, so does the need for faster and more powerful software. Racing teams benefit from brand exposure, and the more they win, the more publicity they get. The paper’s purpose is to address the problem of data prediction. It starts with an overview of Formula 1’s current situation and the billion-dollar industry’s history. Racing organizations that want to save money might consider using Python into their data prediction to improve their chances of winning and climbing in the rankings." @default.
- W4321609056 created "2023-02-24" @default.
- W4321609056 creator A5036588450 @default.
- W4321609056 creator A5091840820 @default.
- W4321609056 date "2023-01-01" @default.
- W4321609056 modified "2023-09-24" @default.
- W4321609056 title "Formula One Race Analysis Using Machine Learning" @default.
- W4321609056 cites W2121088455 @default.
- W4321609056 cites W2322445133 @default.
- W4321609056 cites W2736496744 @default.
- W4321609056 cites W2886412717 @default.
- W4321609056 cites W2970858961 @default.
- W4321609056 cites W3014282671 @default.
- W4321609056 cites W3097391730 @default.
- W4321609056 doi "https://doi.org/10.1007/978-981-19-6088-8_47" @default.
- W4321609056 hasPublicationYear "2023" @default.
- W4321609056 type Work @default.
- W4321609056 citedByCount "0" @default.
- W4321609056 crossrefType "book-chapter" @default.
- W4321609056 hasAuthorship W4321609056A5036588450 @default.
- W4321609056 hasAuthorship W4321609056A5091840820 @default.
- W4321609056 hasConcept C111919701 @default.
- W4321609056 hasConcept C112698675 @default.
- W4321609056 hasConcept C121332964 @default.
- W4321609056 hasConcept C127413603 @default.
- W4321609056 hasConcept C1276947 @default.
- W4321609056 hasConcept C13736549 @default.
- W4321609056 hasConcept C144133560 @default.
- W4321609056 hasConcept C154945302 @default.
- W4321609056 hasConcept C162853370 @default.
- W4321609056 hasConcept C199360897 @default.
- W4321609056 hasConcept C207456731 @default.
- W4321609056 hasConcept C2775884009 @default.
- W4321609056 hasConcept C2776003135 @default.
- W4321609056 hasConcept C2777904410 @default.
- W4321609056 hasConcept C2779501167 @default.
- W4321609056 hasConcept C2994232186 @default.
- W4321609056 hasConcept C41008148 @default.
- W4321609056 hasConcept C42475967 @default.
- W4321609056 hasConcept C519991488 @default.
- W4321609056 hasConceptScore W4321609056C111919701 @default.
- W4321609056 hasConceptScore W4321609056C112698675 @default.
- W4321609056 hasConceptScore W4321609056C121332964 @default.
- W4321609056 hasConceptScore W4321609056C127413603 @default.
- W4321609056 hasConceptScore W4321609056C1276947 @default.
- W4321609056 hasConceptScore W4321609056C13736549 @default.
- W4321609056 hasConceptScore W4321609056C144133560 @default.
- W4321609056 hasConceptScore W4321609056C154945302 @default.
- W4321609056 hasConceptScore W4321609056C162853370 @default.
- W4321609056 hasConceptScore W4321609056C199360897 @default.
- W4321609056 hasConceptScore W4321609056C207456731 @default.
- W4321609056 hasConceptScore W4321609056C2775884009 @default.
- W4321609056 hasConceptScore W4321609056C2776003135 @default.
- W4321609056 hasConceptScore W4321609056C2777904410 @default.
- W4321609056 hasConceptScore W4321609056C2779501167 @default.
- W4321609056 hasConceptScore W4321609056C2994232186 @default.
- W4321609056 hasConceptScore W4321609056C41008148 @default.
- W4321609056 hasConceptScore W4321609056C42475967 @default.
- W4321609056 hasConceptScore W4321609056C519991488 @default.
- W4321609056 hasLocation W43216090561 @default.
- W4321609056 hasOpenAccess W4321609056 @default.
- W4321609056 hasPrimaryLocation W43216090561 @default.
- W4321609056 hasRelatedWork W2065609785 @default.
- W4321609056 hasRelatedWork W2073229422 @default.
- W4321609056 hasRelatedWork W2242101381 @default.
- W4321609056 hasRelatedWork W2280447926 @default.
- W4321609056 hasRelatedWork W2371232242 @default.
- W4321609056 hasRelatedWork W2736174964 @default.
- W4321609056 hasRelatedWork W2886302973 @default.
- W4321609056 hasRelatedWork W3199530015 @default.
- W4321609056 hasRelatedWork W644477932 @default.
- W4321609056 hasRelatedWork W3126994807 @default.
- W4321609056 isParatext "false" @default.
- W4321609056 isRetracted "false" @default.
- W4321609056 workType "book-chapter" @default.