Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321611315> ?p ?o ?g. }
- W4321611315 abstract "Administrative datasets are useful for identifying rare disease cohorts such as pediatric acute myeloid leukemia (AML). Previously, cohorts were assembled using labor-intensive, manual reviews of patients' longitudinal chemotherapy data.We utilized a two-step machine learning (ML) method to (i) identify pediatric patients with newly diagnosed AML, and (ii) among the identified AML patients, their chemotherapy courses, in an administrative/billing database. Using 2558 patients previously manually reviewed, multiple ML algorithms were derived from 75% of the study sample, and the selected model was tested in the remaining hold-out sample. The selected model was also applied to assemble a new pediatric AML cohort and further assessed in an external validation, using a standalone cohort established by manual chart abstraction.For patient identification, the selected Support Vector Machine model yielded a sensitivity of 0.97 and a positive predictive value (PPV) of 0.97 in the hold-out test sample. For course-specific chemotherapy regimen and start date identification, the selected Random Forest model yielded overall PPV greater than or equal to 0.88 and sensitivity greater than or equal to 0.86 across all courses in the test sample. When applied to new cohort assembly, ML identified 3016 AML patients with 10,588 treatment courses. In the external validation subset, PPV was greater than or equal to 0.75 and sensitivity was greater than or equal to 0.82 for patient identification, and PPV was greater than or equal to 0.93 and sensitivity was greater than or equal to 0.94 for regimen identifications.A carefully designed ML model can accurately identify pediatric AML patients and their chemotherapy courses from administrative databases. This approach may be generalizable to other diseases and databases." @default.
- W4321611315 created "2023-02-24" @default.
- W4321611315 creator A5017202683 @default.
- W4321611315 creator A5027433268 @default.
- W4321611315 creator A5036058743 @default.
- W4321611315 creator A5037359116 @default.
- W4321611315 creator A5041739266 @default.
- W4321611315 creator A5055721856 @default.
- W4321611315 creator A5072531702 @default.
- W4321611315 creator A5085239564 @default.
- W4321611315 creator A5087306740 @default.
- W4321611315 creator A5088997057 @default.
- W4321611315 date "2023-02-23" @default.
- W4321611315 modified "2023-10-18" @default.
- W4321611315 title "Leveraging machine learning to identify acute myeloid leukemia patients and their chemotherapy regimens in an administrative database" @default.
- W4321611315 cites W1505191356 @default.
- W4321611315 cites W1808652302 @default.
- W4321611315 cites W1898387255 @default.
- W4321611315 cites W1931396297 @default.
- W4321611315 cites W1999183545 @default.
- W4321611315 cites W2061359244 @default.
- W4321611315 cites W2083165546 @default.
- W4321611315 cites W2095987352 @default.
- W4321611315 cites W2130855441 @default.
- W4321611315 cites W2134378570 @default.
- W4321611315 cites W2171416758 @default.
- W4321611315 cites W2177945213 @default.
- W4321611315 cites W2342249984 @default.
- W4321611315 cites W2395172628 @default.
- W4321611315 cites W2474667434 @default.
- W4321611315 cites W2519862706 @default.
- W4321611315 cites W2557902882 @default.
- W4321611315 cites W2577090193 @default.
- W4321611315 cites W2579563793 @default.
- W4321611315 cites W2739924525 @default.
- W4321611315 cites W2769505037 @default.
- W4321611315 cites W2777794149 @default.
- W4321611315 cites W2790573278 @default.
- W4321611315 cites W2791190302 @default.
- W4321611315 cites W2795370578 @default.
- W4321611315 cites W2799615997 @default.
- W4321611315 cites W2894571482 @default.
- W4321611315 cites W2906584451 @default.
- W4321611315 cites W2915312288 @default.
- W4321611315 cites W2934399013 @default.
- W4321611315 cites W2943491685 @default.
- W4321611315 cites W2960228757 @default.
- W4321611315 cites W2972638668 @default.
- W4321611315 cites W2974536149 @default.
- W4321611315 cites W3007431292 @default.
- W4321611315 cites W3016970010 @default.
- W4321611315 cites W3037082682 @default.
- W4321611315 cites W3041752030 @default.
- W4321611315 cites W3042602734 @default.
- W4321611315 cites W3087015794 @default.
- W4321611315 cites W3090706124 @default.
- W4321611315 cites W3094288129 @default.
- W4321611315 cites W3098801741 @default.
- W4321611315 cites W3099878876 @default.
- W4321611315 cites W3109609494 @default.
- W4321611315 cites W3111879617 @default.
- W4321611315 cites W3119005666 @default.
- W4321611315 cites W3119718700 @default.
- W4321611315 cites W3174786846 @default.
- W4321611315 cites W3196529262 @default.
- W4321611315 cites W3208125422 @default.
- W4321611315 cites W4200406749 @default.
- W4321611315 cites W4210321076 @default.
- W4321611315 cites W4220687385 @default.
- W4321611315 doi "https://doi.org/10.1002/pbc.30260" @default.
- W4321611315 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36815580" @default.
- W4321611315 hasPublicationYear "2023" @default.
- W4321611315 type Work @default.
- W4321611315 citedByCount "1" @default.
- W4321611315 countsByYear W43216113152023 @default.
- W4321611315 crossrefType "journal-article" @default.
- W4321611315 hasAuthorship W4321611315A5017202683 @default.
- W4321611315 hasAuthorship W4321611315A5027433268 @default.
- W4321611315 hasAuthorship W4321611315A5036058743 @default.
- W4321611315 hasAuthorship W4321611315A5037359116 @default.
- W4321611315 hasAuthorship W4321611315A5041739266 @default.
- W4321611315 hasAuthorship W4321611315A5055721856 @default.
- W4321611315 hasAuthorship W4321611315A5072531702 @default.
- W4321611315 hasAuthorship W4321611315A5085239564 @default.
- W4321611315 hasAuthorship W4321611315A5087306740 @default.
- W4321611315 hasAuthorship W4321611315A5088997057 @default.
- W4321611315 hasConcept C116834253 @default.
- W4321611315 hasConcept C126322002 @default.
- W4321611315 hasConcept C143998085 @default.
- W4321611315 hasConcept C187212893 @default.
- W4321611315 hasConcept C2776694085 @default.
- W4321611315 hasConcept C2778336483 @default.
- W4321611315 hasConcept C2778729363 @default.
- W4321611315 hasConcept C2781413609 @default.
- W4321611315 hasConcept C41008148 @default.
- W4321611315 hasConcept C59822182 @default.
- W4321611315 hasConcept C71924100 @default.
- W4321611315 hasConcept C72563966 @default.
- W4321611315 hasConcept C77088390 @default.
- W4321611315 hasConcept C86803240 @default.