Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321767823> ?p ?o ?g. }
- W4321767823 endingPage "105963" @default.
- W4321767823 startingPage "105963" @default.
- W4321767823 abstract "Monitoring the mass of liquid absorption in laminated composite structures, that have a direct contact surface with working liquid-like pipes, is very important in order to prevent the sudden collapse of the structures because of the degradations in strength and mechanical properties over time. An electrical capacitance sensor technique has been applied for monitoring the mass of liquid absorption, over the time, in laminated composite pipelines by measuring the change of dielectric characteristics of composite pipelines subjected to an internal hydrostatic pressure load of water and thermal effect. Results show the technique is very effective. However, a major difficulty in utilizing this technique is that it is highly time consuming to be used for monitoring, in addition to the detection efforts that it requires to calculate the mass of liquid absorption that exerts high cost and loss of additional time in monitoring. In this paper, a deep neural network model is used to estimate the mass of liquid absorption in glass fiber reinforced epoxy laminated composite pipelines by extracting the features from datasets from experimental and numerical measurements of the electrical capacitance sensor. The experimental and numerical data used in this paper to train and test the new deep neural network model are collected from the literature and the finite element model of the electrical capacitance sensor system respectively. The results show an excellent agreement between the finite element model data, available experimental data, and those predicted by a deep neural network with an average error of 0.067%, and show that the proposed method achieves satisfactory performance with 86.34% accuracy, 82.83% regression rate and 83.74% F-score. The proposed approach overcomes the difficult problem of saving time and effort to accurately detect the mass of liquid absorption over the time, and provides a promising approach for a wider application of this intelligent model." @default.
- W4321767823 created "2023-02-25" @default.
- W4321767823 creator A5009072193 @default.
- W4321767823 creator A5038597770 @default.
- W4321767823 creator A5044158013 @default.
- W4321767823 creator A5066762115 @default.
- W4321767823 creator A5074630329 @default.
- W4321767823 date "2023-05-01" @default.
- W4321767823 modified "2023-10-06" @default.
- W4321767823 title "A deep-learning approach for predicting water absorption in composite pipes by extracting the material’s dielectric features" @default.
- W4321767823 cites W11195336 @default.
- W4321767823 cites W1873701470 @default.
- W4321767823 cites W1886979042 @default.
- W4321767823 cites W1974773146 @default.
- W4321767823 cites W1983995278 @default.
- W4321767823 cites W1995398652 @default.
- W4321767823 cites W1998924471 @default.
- W4321767823 cites W2000483345 @default.
- W4321767823 cites W2014074148 @default.
- W4321767823 cites W2015628270 @default.
- W4321767823 cites W2018797696 @default.
- W4321767823 cites W2025916359 @default.
- W4321767823 cites W2030464712 @default.
- W4321767823 cites W2032242132 @default.
- W4321767823 cites W2035652514 @default.
- W4321767823 cites W2040709725 @default.
- W4321767823 cites W2045803605 @default.
- W4321767823 cites W2047037347 @default.
- W4321767823 cites W2047961955 @default.
- W4321767823 cites W2056569042 @default.
- W4321767823 cites W2064619891 @default.
- W4321767823 cites W2065384876 @default.
- W4321767823 cites W2079445638 @default.
- W4321767823 cites W2082183244 @default.
- W4321767823 cites W2086762132 @default.
- W4321767823 cites W2089571497 @default.
- W4321767823 cites W2114451720 @default.
- W4321767823 cites W2122388072 @default.
- W4321767823 cites W2153298254 @default.
- W4321767823 cites W2166642825 @default.
- W4321767823 cites W2172772915 @default.
- W4321767823 cites W2195597374 @default.
- W4321767823 cites W2221118401 @default.
- W4321767823 cites W2257997280 @default.
- W4321767823 cites W2272848337 @default.
- W4321767823 cites W2554221514 @default.
- W4321767823 cites W2598457882 @default.
- W4321767823 cites W2620841889 @default.
- W4321767823 cites W2733409897 @default.
- W4321767823 cites W2734884913 @default.
- W4321767823 cites W2767459730 @default.
- W4321767823 cites W2767522444 @default.
- W4321767823 cites W2791957585 @default.
- W4321767823 cites W2791961831 @default.
- W4321767823 cites W2808137721 @default.
- W4321767823 cites W2903856671 @default.
- W4321767823 cites W2909298949 @default.
- W4321767823 cites W2919115771 @default.
- W4321767823 cites W2938521935 @default.
- W4321767823 cites W2965095982 @default.
- W4321767823 cites W2999473454 @default.
- W4321767823 cites W3005985412 @default.
- W4321767823 cites W3126338618 @default.
- W4321767823 cites W3175985914 @default.
- W4321767823 cites W4200477154 @default.
- W4321767823 cites W4296467544 @default.
- W4321767823 cites W4296739436 @default.
- W4321767823 cites W4309152925 @default.
- W4321767823 cites W4310715947 @default.
- W4321767823 cites W4312127855 @default.
- W4321767823 cites W4320477612 @default.
- W4321767823 cites W45670030 @default.
- W4321767823 doi "https://doi.org/10.1016/j.engappai.2023.105963" @default.
- W4321767823 hasPublicationYear "2023" @default.
- W4321767823 type Work @default.
- W4321767823 citedByCount "4" @default.
- W4321767823 countsByYear W43217678232023 @default.
- W4321767823 crossrefType "journal-article" @default.
- W4321767823 hasAuthorship W4321767823A5009072193 @default.
- W4321767823 hasAuthorship W4321767823A5038597770 @default.
- W4321767823 hasAuthorship W4321767823A5044158013 @default.
- W4321767823 hasAuthorship W4321767823A5066762115 @default.
- W4321767823 hasAuthorship W4321767823A5074630329 @default.
- W4321767823 hasBestOaLocation W43217678231 @default.
- W4321767823 hasConcept C104779481 @default.
- W4321767823 hasConcept C111919701 @default.
- W4321767823 hasConcept C121332964 @default.
- W4321767823 hasConcept C125287762 @default.
- W4321767823 hasConcept C127413603 @default.
- W4321767823 hasConcept C133386390 @default.
- W4321767823 hasConcept C134853933 @default.
- W4321767823 hasConcept C135628077 @default.
- W4321767823 hasConcept C147789679 @default.
- W4321767823 hasConcept C154945302 @default.
- W4321767823 hasConcept C159985019 @default.
- W4321767823 hasConcept C166595027 @default.
- W4321767823 hasConcept C17525397 @default.
- W4321767823 hasConcept C175309249 @default.