Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321770568> ?p ?o ?g. }
- W4321770568 endingPage "7612" @default.
- W4321770568 startingPage "7597" @default.
- W4321770568 abstract "This paper is concerned with online algorithms for the generalized Hermitian eigenvalue problem (GHEP). We first present an algorithm based on randomization, termed alternate-projections randomized eigenvalue decomposition (APR-EVD), to solve the standard eigenvalue problem. The APR-EVD algorithm is computationally efficient and can be computed by making only one pass through the input matrix. We then develop two online algorithms based on APR-EVD for the dominant generalized eigenvectors extraction. Our proposed algorithms use the fact that GHEP is transformed into a standard eigenvalue problem, however to avert computations of a matrix inverse and inverse of the square root of a matrix, which are prohibitive, they exploit the rank-1 strategy for the transformation. Our algorithms are devised for extracting generalized eigenvectors for scenarios in which observed stochastic signals have unknown covariance matrices. The effectiveness and practical applicability of our proposed algorithms are validated through numerical experiments with synthetic and real-world data." @default.
- W4321770568 created "2023-02-25" @default.
- W4321770568 creator A5009808175 @default.
- W4321770568 creator A5039334577 @default.
- W4321770568 creator A5061257458 @default.
- W4321770568 creator A5062462542 @default.
- W4321770568 creator A5078349263 @default.
- W4321770568 date "2023-06-01" @default.
- W4321770568 modified "2023-09-29" @default.
- W4321770568 title "Online Dominant Generalized Eigenvectors Extraction via a Randomized Algorithm" @default.
- W4321770568 cites W131753375 @default.
- W4321770568 cites W1445618291 @default.
- W4321770568 cites W1925032196 @default.
- W4321770568 cites W1970576574 @default.
- W4321770568 cites W1979750072 @default.
- W4321770568 cites W1990701162 @default.
- W4321770568 cites W2001951724 @default.
- W4321770568 cites W2013590534 @default.
- W4321770568 cites W2024834894 @default.
- W4321770568 cites W2026297137 @default.
- W4321770568 cites W2034781315 @default.
- W4321770568 cites W2040387238 @default.
- W4321770568 cites W2040686721 @default.
- W4321770568 cites W2045390367 @default.
- W4321770568 cites W2059090701 @default.
- W4321770568 cites W2104309817 @default.
- W4321770568 cites W2117756735 @default.
- W4321770568 cites W2123957576 @default.
- W4321770568 cites W2124423192 @default.
- W4321770568 cites W2133515443 @default.
- W4321770568 cites W2136625467 @default.
- W4321770568 cites W2145211141 @default.
- W4321770568 cites W2145791347 @default.
- W4321770568 cites W2147353113 @default.
- W4321770568 cites W2156208697 @default.
- W4321770568 cites W2166604943 @default.
- W4321770568 cites W2191943767 @default.
- W4321770568 cites W2254223938 @default.
- W4321770568 cites W2323117027 @default.
- W4321770568 cites W2334834948 @default.
- W4321770568 cites W2405739207 @default.
- W4321770568 cites W2480854438 @default.
- W4321770568 cites W2484071357 @default.
- W4321770568 cites W2782188726 @default.
- W4321770568 cites W2795393485 @default.
- W4321770568 cites W2947946584 @default.
- W4321770568 cites W2963286139 @default.
- W4321770568 cites W3030910590 @default.
- W4321770568 cites W3035003864 @default.
- W4321770568 cites W3114713599 @default.
- W4321770568 cites W3127950645 @default.
- W4321770568 cites W3134929776 @default.
- W4321770568 cites W4213311204 @default.
- W4321770568 cites W4230094279 @default.
- W4321770568 cites W4240959780 @default.
- W4321770568 cites W862919699 @default.
- W4321770568 doi "https://doi.org/10.1109/tvt.2023.3243244" @default.
- W4321770568 hasPublicationYear "2023" @default.
- W4321770568 type Work @default.
- W4321770568 citedByCount "0" @default.
- W4321770568 crossrefType "journal-article" @default.
- W4321770568 hasAuthorship W4321770568A5009808175 @default.
- W4321770568 hasAuthorship W4321770568A5039334577 @default.
- W4321770568 hasAuthorship W4321770568A5061257458 @default.
- W4321770568 hasAuthorship W4321770568A5062462542 @default.
- W4321770568 hasAuthorship W4321770568A5078349263 @default.
- W4321770568 hasConcept C106487976 @default.
- W4321770568 hasConcept C11413529 @default.
- W4321770568 hasConcept C121332964 @default.
- W4321770568 hasConcept C126255220 @default.
- W4321770568 hasConcept C147925508 @default.
- W4321770568 hasConcept C158693339 @default.
- W4321770568 hasConcept C159985019 @default.
- W4321770568 hasConcept C169756996 @default.
- W4321770568 hasConcept C185142706 @default.
- W4321770568 hasConcept C192562407 @default.
- W4321770568 hasConcept C192702615 @default.
- W4321770568 hasConcept C202444582 @default.
- W4321770568 hasConcept C207467116 @default.
- W4321770568 hasConcept C22629506 @default.
- W4321770568 hasConcept C2505209 @default.
- W4321770568 hasConcept C2524010 @default.
- W4321770568 hasConcept C33923547 @default.
- W4321770568 hasConcept C41008148 @default.
- W4321770568 hasConcept C45374587 @default.
- W4321770568 hasConcept C54848796 @default.
- W4321770568 hasConcept C62520636 @default.
- W4321770568 hasConcept C94940 @default.
- W4321770568 hasConceptScore W4321770568C106487976 @default.
- W4321770568 hasConceptScore W4321770568C11413529 @default.
- W4321770568 hasConceptScore W4321770568C121332964 @default.
- W4321770568 hasConceptScore W4321770568C126255220 @default.
- W4321770568 hasConceptScore W4321770568C147925508 @default.
- W4321770568 hasConceptScore W4321770568C158693339 @default.
- W4321770568 hasConceptScore W4321770568C159985019 @default.
- W4321770568 hasConceptScore W4321770568C169756996 @default.
- W4321770568 hasConceptScore W4321770568C185142706 @default.
- W4321770568 hasConceptScore W4321770568C192562407 @default.