Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321786066> ?p ?o ?g. }
- W4321786066 endingPage "1417" @default.
- W4321786066 startingPage "1401" @default.
- W4321786066 abstract "Purpose As the supply chain is a highly integrated infrastructure in modern business, the risks in supply chain are also becoming highly contagious among the target company. This motivates researchers to continuously add new features to the datasets for the credit risk prediction (CRP). However, adding new features can easily lead to missing of the data. Design/methodology/approach Based on the gaps summarized from the literature in CRP, this study first introduces the approaches to the building of datasets and the framing of the algorithmic models. Then, this study tests the interpolation effects of the algorithmic model in three artificial datasets with different missing rates and compares its predictability before and after the interpolation in a real dataset with the missing data in irregular time-series. Findings The algorithmic model of the time-decayed long short-term memory (TD-LSTM) proposed in this study can monitor the missing data in irregular time-series by capturing more and better time-series information, and interpolating the missing data efficiently. Moreover, the algorithmic model of Deep Neural Network can be used in the CRP for the datasets with the missing data in irregular time-series after the interpolation by the TD-LSTM. Originality/value This study fully validates the TD-LSTM interpolation effects and demonstrates that the predictability of the dataset after interpolation is improved. Accurate and timely CRP can undoubtedly assist a target company in avoiding losses. Identifying credit risks and taking preventive measures ahead of time, especially in the case of public emergencies, can help the company minimize losses." @default.
- W4321786066 created "2023-02-25" @default.
- W4321786066 creator A5024010407 @default.
- W4321786066 creator A5049290836 @default.
- W4321786066 creator A5066843217 @default.
- W4321786066 creator A5074385560 @default.
- W4321786066 creator A5090776873 @default.
- W4321786066 date "2023-02-27" @default.
- W4321786066 modified "2023-09-27" @default.
- W4321786066 title "Using deep learning to interpolate the missing data in time-series for credit risks along supply chain" @default.
- W4321786066 cites W2020908197 @default.
- W4321786066 cites W2053529851 @default.
- W4321786066 cites W2057053883 @default.
- W4321786066 cites W2064675550 @default.
- W4321786066 cites W2073170661 @default.
- W4321786066 cites W2078774137 @default.
- W4321786066 cites W2079735306 @default.
- W4321786066 cites W2095628874 @default.
- W4321786066 cites W2140878266 @default.
- W4321786066 cites W2145036165 @default.
- W4321786066 cites W2163150789 @default.
- W4321786066 cites W2169908081 @default.
- W4321786066 cites W2171642129 @default.
- W4321786066 cites W2410255620 @default.
- W4321786066 cites W2417161696 @default.
- W4321786066 cites W2463618975 @default.
- W4321786066 cites W2486271310 @default.
- W4321786066 cites W2573071207 @default.
- W4321786066 cites W2604269166 @default.
- W4321786066 cites W2678892993 @default.
- W4321786066 cites W2791364881 @default.
- W4321786066 cites W2802240654 @default.
- W4321786066 cites W2803946395 @default.
- W4321786066 cites W2885804815 @default.
- W4321786066 cites W2889230014 @default.
- W4321786066 cites W2895269073 @default.
- W4321786066 cites W2911543806 @default.
- W4321786066 cites W2919115771 @default.
- W4321786066 cites W2922379396 @default.
- W4321786066 cites W2947411064 @default.
- W4321786066 cites W2963360736 @default.
- W4321786066 cites W2978309629 @default.
- W4321786066 cites W2991580101 @default.
- W4321786066 cites W3010957596 @default.
- W4321786066 cites W3021124440 @default.
- W4321786066 cites W3024764003 @default.
- W4321786066 cites W3034563984 @default.
- W4321786066 cites W3045637573 @default.
- W4321786066 cites W3046045515 @default.
- W4321786066 cites W3124636951 @default.
- W4321786066 cites W3124918635 @default.
- W4321786066 cites W3165098340 @default.
- W4321786066 cites W3217461219 @default.
- W4321786066 cites W3217526077 @default.
- W4321786066 cites W784579088 @default.
- W4321786066 doi "https://doi.org/10.1108/imds-08-2022-0468" @default.
- W4321786066 hasPublicationYear "2023" @default.
- W4321786066 type Work @default.
- W4321786066 citedByCount "0" @default.
- W4321786066 crossrefType "journal-article" @default.
- W4321786066 hasAuthorship W4321786066A5024010407 @default.
- W4321786066 hasAuthorship W4321786066A5049290836 @default.
- W4321786066 hasAuthorship W4321786066A5066843217 @default.
- W4321786066 hasAuthorship W4321786066A5074385560 @default.
- W4321786066 hasAuthorship W4321786066A5090776873 @default.
- W4321786066 hasConcept C104114177 @default.
- W4321786066 hasConcept C105795698 @default.
- W4321786066 hasConcept C108583219 @default.
- W4321786066 hasConcept C119857082 @default.
- W4321786066 hasConcept C124101348 @default.
- W4321786066 hasConcept C137800194 @default.
- W4321786066 hasConcept C143724316 @default.
- W4321786066 hasConcept C151406439 @default.
- W4321786066 hasConcept C151730666 @default.
- W4321786066 hasConcept C154945302 @default.
- W4321786066 hasConcept C197640229 @default.
- W4321786066 hasConcept C33923547 @default.
- W4321786066 hasConcept C41008148 @default.
- W4321786066 hasConcept C50644808 @default.
- W4321786066 hasConcept C86803240 @default.
- W4321786066 hasConcept C9357733 @default.
- W4321786066 hasConceptScore W4321786066C104114177 @default.
- W4321786066 hasConceptScore W4321786066C105795698 @default.
- W4321786066 hasConceptScore W4321786066C108583219 @default.
- W4321786066 hasConceptScore W4321786066C119857082 @default.
- W4321786066 hasConceptScore W4321786066C124101348 @default.
- W4321786066 hasConceptScore W4321786066C137800194 @default.
- W4321786066 hasConceptScore W4321786066C143724316 @default.
- W4321786066 hasConceptScore W4321786066C151406439 @default.
- W4321786066 hasConceptScore W4321786066C151730666 @default.
- W4321786066 hasConceptScore W4321786066C154945302 @default.
- W4321786066 hasConceptScore W4321786066C197640229 @default.
- W4321786066 hasConceptScore W4321786066C33923547 @default.
- W4321786066 hasConceptScore W4321786066C41008148 @default.
- W4321786066 hasConceptScore W4321786066C50644808 @default.
- W4321786066 hasConceptScore W4321786066C86803240 @default.
- W4321786066 hasConceptScore W4321786066C9357733 @default.
- W4321786066 hasIssue "5" @default.