Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321786787> ?p ?o ?g. }
- W4321786787 endingPage "316" @default.
- W4321786787 startingPage "316" @default.
- W4321786787 abstract "Determining nucleic acid concentrations in a sample is an important step prior to proceeding with downstream analysis in molecular diagnostics. Given the need for testing DNA amounts and its purity in many samples, including in samples with very small input DNA, there is utility of novel machine learning approaches for accurate and high-throughput DNA quantification. Here, we demonstrated the ability of a neural network to predict DNA amounts coupled to paramagnetic beads. To this end, a custom-made microfluidic chip is applied to detect DNA molecules bound to beads by measuring the impedance peak response (IPR) at multiple frequencies. We leveraged electrical measurements including the frequency and imaginary and real parts of the peak intensity within a microfluidic channel as the input of deep learning models to predict DNA concentration. Specifically, 10 different deep learning architectures are examined. The results of the proposed regression model indicate that an R_Squared of 97% with a slope of 0.68 is achievable. Consequently, machine learning models can be a suitable, fast, and accurate method to measure nucleic acid concentration in a sample. The results presented in this study demonstrate the ability of the proposed neural network to use the information embedded in raw impedance data to predict the amount of DNA concentration." @default.
- W4321786787 created "2023-02-25" @default.
- W4321786787 creator A5002277845 @default.
- W4321786787 creator A5011379616 @default.
- W4321786787 creator A5055797335 @default.
- W4321786787 creator A5064699738 @default.
- W4321786787 creator A5081272523 @default.
- W4321786787 creator A5091180399 @default.
- W4321786787 date "2023-02-24" @default.
- W4321786787 modified "2023-10-09" @default.
- W4321786787 title "Nucleic Acid Quantification by Multi-Frequency Impedance Cytometry and Machine Learning" @default.
- W4321786787 cites W1651586605 @default.
- W4321786787 cites W1965187929 @default.
- W4321786787 cites W2002694644 @default.
- W4321786787 cites W2009040055 @default.
- W4321786787 cites W2015002486 @default.
- W4321786787 cites W2030469368 @default.
- W4321786787 cites W2044549466 @default.
- W4321786787 cites W2121815876 @default.
- W4321786787 cites W2321278764 @default.
- W4321786787 cites W2501467267 @default.
- W4321786787 cites W2777235285 @default.
- W4321786787 cites W2883180608 @default.
- W4321786787 cites W2896259856 @default.
- W4321786787 cites W2905281057 @default.
- W4321786787 cites W2922073769 @default.
- W4321786787 cites W2957396663 @default.
- W4321786787 cites W2964038321 @default.
- W4321786787 cites W2990722196 @default.
- W4321786787 cites W3003526254 @default.
- W4321786787 cites W3008954962 @default.
- W4321786787 cites W3047798088 @default.
- W4321786787 cites W3048630347 @default.
- W4321786787 cites W3092576495 @default.
- W4321786787 cites W3102910059 @default.
- W4321786787 cites W3110552151 @default.
- W4321786787 cites W3114052947 @default.
- W4321786787 cites W3119516734 @default.
- W4321786787 cites W3127425528 @default.
- W4321786787 cites W3137938838 @default.
- W4321786787 cites W3155158672 @default.
- W4321786787 cites W3161263649 @default.
- W4321786787 cites W3162881778 @default.
- W4321786787 cites W3164499388 @default.
- W4321786787 cites W3165488100 @default.
- W4321786787 cites W3173904913 @default.
- W4321786787 cites W3216443846 @default.
- W4321786787 cites W4220865359 @default.
- W4321786787 cites W4281987408 @default.
- W4321786787 cites W4292737309 @default.
- W4321786787 cites W4293371119 @default.
- W4321786787 cites W4296886862 @default.
- W4321786787 doi "https://doi.org/10.3390/bios13030316" @default.
- W4321786787 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36979528" @default.
- W4321786787 hasPublicationYear "2023" @default.
- W4321786787 type Work @default.
- W4321786787 citedByCount "5" @default.
- W4321786787 countsByYear W43217867872023 @default.
- W4321786787 crossrefType "journal-article" @default.
- W4321786787 hasAuthorship W4321786787A5002277845 @default.
- W4321786787 hasAuthorship W4321786787A5011379616 @default.
- W4321786787 hasAuthorship W4321786787A5055797335 @default.
- W4321786787 hasAuthorship W4321786787A5064699738 @default.
- W4321786787 hasAuthorship W4321786787A5081272523 @default.
- W4321786787 hasAuthorship W4321786787A5091180399 @default.
- W4321786787 hasBestOaLocation W43217867871 @default.
- W4321786787 hasConcept C113196181 @default.
- W4321786787 hasConcept C119599485 @default.
- W4321786787 hasConcept C119857082 @default.
- W4321786787 hasConcept C127413603 @default.
- W4321786787 hasConcept C154945302 @default.
- W4321786787 hasConcept C171250308 @default.
- W4321786787 hasConcept C17829176 @default.
- W4321786787 hasConcept C185592680 @default.
- W4321786787 hasConcept C186060115 @default.
- W4321786787 hasConcept C192562407 @default.
- W4321786787 hasConcept C24107716 @default.
- W4321786787 hasConcept C41008148 @default.
- W4321786787 hasConcept C43617362 @default.
- W4321786787 hasConcept C50644808 @default.
- W4321786787 hasConcept C552990157 @default.
- W4321786787 hasConcept C55493867 @default.
- W4321786787 hasConcept C8673954 @default.
- W4321786787 hasConcept C86803240 @default.
- W4321786787 hasConceptScore W4321786787C113196181 @default.
- W4321786787 hasConceptScore W4321786787C119599485 @default.
- W4321786787 hasConceptScore W4321786787C119857082 @default.
- W4321786787 hasConceptScore W4321786787C127413603 @default.
- W4321786787 hasConceptScore W4321786787C154945302 @default.
- W4321786787 hasConceptScore W4321786787C171250308 @default.
- W4321786787 hasConceptScore W4321786787C17829176 @default.
- W4321786787 hasConceptScore W4321786787C185592680 @default.
- W4321786787 hasConceptScore W4321786787C186060115 @default.
- W4321786787 hasConceptScore W4321786787C192562407 @default.
- W4321786787 hasConceptScore W4321786787C24107716 @default.
- W4321786787 hasConceptScore W4321786787C41008148 @default.
- W4321786787 hasConceptScore W4321786787C43617362 @default.
- W4321786787 hasConceptScore W4321786787C50644808 @default.