Matches in SemOpenAlex for { <https://semopenalex.org/work/W4321793224> ?p ?o ?g. }
- W4321793224 endingPage "119738" @default.
- W4321793224 startingPage "119738" @default.
- W4321793224 abstract "In modern industry, the quality of maintenance directly influences equipment’s operational uptime and efficiency. Hence, based on monitoring the condition of the machinery, predictive maintenance can minimize machine downtime and potential losses. Throughout the field, machine learning (ML) methods have become noteworthy for predicting failures before they occur. However, the efficacy of the predictive maintenance strategy relies on selecting the appropriate data processing method and ML model. Existing surveys do not comprehensively inform users or evaluate the quality of the monitoring systems proposed. Hence, this survey reviews the recent literature on ML-driven condition monitoring systems that have been beneficial in many cases. Furthermore, in the reviewed literature, we provide an insight into the underlying findings on successful, intelligent condition monitoring systems. It is prudent to consider all factors when narrowing the search for the most effective model for a particular task. Therefore, the tradeoff between task constraints and the performance of each diagnostic technique are quantitively and comparatively evaluated to obtain the given problem's optimal solution." @default.
- W4321793224 created "2023-02-25" @default.
- W4321793224 creator A5029583636 @default.
- W4321793224 creator A5051837475 @default.
- W4321793224 creator A5070963003 @default.
- W4321793224 date "2023-07-01" @default.
- W4321793224 modified "2023-10-09" @default.
- W4321793224 title "Condition Monitoring using Machine Learning: A Review of Theory, Applications, and Recent Advances" @default.
- W4321793224 cites W1162624365 @default.
- W4321793224 cites W1487321909 @default.
- W4321793224 cites W1499842900 @default.
- W4321793224 cites W1582873796 @default.
- W4321793224 cites W174812315 @default.
- W4321793224 cites W1757980361 @default.
- W4321793224 cites W1795129371 @default.
- W4321793224 cites W1847744546 @default.
- W4321793224 cites W187337555 @default.
- W4321793224 cites W1977177161 @default.
- W4321793224 cites W1988671308 @default.
- W4321793224 cites W1989536919 @default.
- W4321793224 cites W1995806857 @default.
- W4321793224 cites W1996021349 @default.
- W4321793224 cites W1998940406 @default.
- W4321793224 cites W2005140670 @default.
- W4321793224 cites W2011296483 @default.
- W4321793224 cites W2026672939 @default.
- W4321793224 cites W2031147858 @default.
- W4321793224 cites W2050252315 @default.
- W4321793224 cites W2056293219 @default.
- W4321793224 cites W2062423474 @default.
- W4321793224 cites W2064675550 @default.
- W4321793224 cites W2081910282 @default.
- W4321793224 cites W2107074288 @default.
- W4321793224 cites W2117731089 @default.
- W4321793224 cites W2118456679 @default.
- W4321793224 cites W2121317260 @default.
- W4321793224 cites W2139575464 @default.
- W4321793224 cites W2157115450 @default.
- W4321793224 cites W2170505850 @default.
- W4321793224 cites W2195660543 @default.
- W4321793224 cites W2395739386 @default.
- W4321793224 cites W2461729787 @default.
- W4321793224 cites W2467694619 @default.
- W4321793224 cites W2472060958 @default.
- W4321793224 cites W2476279321 @default.
- W4321793224 cites W2477588051 @default.
- W4321793224 cites W2489877094 @default.
- W4321793224 cites W2499581503 @default.
- W4321793224 cites W2517294032 @default.
- W4321793224 cites W2568662015 @default.
- W4321793224 cites W2608562934 @default.
- W4321793224 cites W2619363936 @default.
- W4321793224 cites W2761148314 @default.
- W4321793224 cites W2772260922 @default.
- W4321793224 cites W2788066116 @default.
- W4321793224 cites W2790989204 @default.
- W4321793224 cites W2792841389 @default.
- W4321793224 cites W2799199268 @default.
- W4321793224 cites W2808548605 @default.
- W4321793224 cites W2810689581 @default.
- W4321793224 cites W2885195348 @default.
- W4321793224 cites W2889795354 @default.
- W4321793224 cites W2893946350 @default.
- W4321793224 cites W2894758925 @default.
- W4321793224 cites W2896266079 @default.
- W4321793224 cites W2897147196 @default.
- W4321793224 cites W2897250207 @default.
- W4321793224 cites W2898488758 @default.
- W4321793224 cites W2899231837 @default.
- W4321793224 cites W2899490624 @default.
- W4321793224 cites W2904967895 @default.
- W4321793224 cites W2908131432 @default.
- W4321793224 cites W2944364052 @default.
- W4321793224 cites W2954766832 @default.
- W4321793224 cites W2965445157 @default.
- W4321793224 cites W2968227854 @default.
- W4321793224 cites W2969389268 @default.
- W4321793224 cites W2970602317 @default.
- W4321793224 cites W2978157082 @default.
- W4321793224 cites W2979797082 @default.
- W4321793224 cites W2992819607 @default.
- W4321793224 cites W2994109647 @default.
- W4321793224 cites W2998985276 @default.
- W4321793224 cites W3005542031 @default.
- W4321793224 cites W3011159591 @default.
- W4321793224 cites W3013584904 @default.
- W4321793224 cites W3016969695 @default.
- W4321793224 cites W3022965296 @default.
- W4321793224 cites W3028194416 @default.
- W4321793224 cites W3028376820 @default.
- W4321793224 cites W3041049053 @default.
- W4321793224 cites W3041632065 @default.
- W4321793224 cites W3045515783 @default.
- W4321793224 cites W3080816325 @default.
- W4321793224 cites W3081081922 @default.
- W4321793224 cites W3081220306 @default.
- W4321793224 cites W3081283712 @default.
- W4321793224 cites W3086038610 @default.