Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322001242> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4322001242 abstract "Plastic pollution of water bodies is a major environmental issue, as it can have harmful effects on marine life, riverine ecosystems and society as a whole. To mitigate the impacts of plastic pollution, accurate detection and quantification of macroplastic litter (plastic items > 5 mm) is of particular importance. In recent years, researchers and engineers have developed Deep Learning methods showing promising performances for detecting riverine macroplastic litter. However, there are several outstanding issues hindering the advancement of the field, including the lack of available data sources for training such models.Here, we present a new open source dataset for the detection of floating macroplastic litter. We generated the dataset from controlled experiments carried out in a small drainage canal on the TU Delft campus. The dataset features 626 different litter items including plastic bottles, bags and other plastic objects, as well as metal tins and paper litter. These items include household waste as well as litter recovered from canals in the Netherlands. We captured images with a resolution of 1080p and a linear field of view using two different action cameras and a phone, mounted on a bridge. The dataset consists of 10000 images, taken from two different heights (2.7 and 4.0 meters), two different inclinations (0 and 45 degrees from the horizontal), and two different weather conditions (sunny and cloudy sky).In this presentation, we provide information on the dataset and the experiments carried out to generate it. We also discuss the results of benchmark Deep Learning models for multi-class classification trained on the dataset, and their out-of-sample generalization ability to other case studies. While labels are currently available only for image classification, we aim to release annotations for object detection and image segmentation tasks in the future." @default.
- W4322001242 created "2023-02-26" @default.
- W4322001242 creator A5009938897 @default.
- W4322001242 creator A5050727151 @default.
- W4322001242 creator A5058182987 @default.
- W4322001242 creator A5089042321 @default.
- W4322001242 creator A5089961053 @default.
- W4322001242 date "2023-05-15" @default.
- W4322001242 modified "2023-09-27" @default.
- W4322001242 title "An open source dataset for Deep Learning-based visual detection of floating macroplastic litter" @default.
- W4322001242 doi "https://doi.org/10.5194/egusphere-egu23-12092" @default.
- W4322001242 hasPublicationYear "2023" @default.
- W4322001242 type Work @default.
- W4322001242 citedByCount "0" @default.
- W4322001242 crossrefType "posted-content" @default.
- W4322001242 hasAuthorship W4322001242A5009938897 @default.
- W4322001242 hasAuthorship W4322001242A5050727151 @default.
- W4322001242 hasAuthorship W4322001242A5058182987 @default.
- W4322001242 hasAuthorship W4322001242A5089042321 @default.
- W4322001242 hasAuthorship W4322001242A5089961053 @default.
- W4322001242 hasConcept C108583219 @default.
- W4322001242 hasConcept C119857082 @default.
- W4322001242 hasConcept C127413603 @default.
- W4322001242 hasConcept C154945302 @default.
- W4322001242 hasConcept C185798385 @default.
- W4322001242 hasConcept C18903297 @default.
- W4322001242 hasConcept C193258505 @default.
- W4322001242 hasConcept C205649164 @default.
- W4322001242 hasConcept C2779429622 @default.
- W4322001242 hasConcept C2779892437 @default.
- W4322001242 hasConcept C39432304 @default.
- W4322001242 hasConcept C41008148 @default.
- W4322001242 hasConcept C521259446 @default.
- W4322001242 hasConcept C548081761 @default.
- W4322001242 hasConcept C58640448 @default.
- W4322001242 hasConcept C78519656 @default.
- W4322001242 hasConcept C86803240 @default.
- W4322001242 hasConceptScore W4322001242C108583219 @default.
- W4322001242 hasConceptScore W4322001242C119857082 @default.
- W4322001242 hasConceptScore W4322001242C127413603 @default.
- W4322001242 hasConceptScore W4322001242C154945302 @default.
- W4322001242 hasConceptScore W4322001242C185798385 @default.
- W4322001242 hasConceptScore W4322001242C18903297 @default.
- W4322001242 hasConceptScore W4322001242C193258505 @default.
- W4322001242 hasConceptScore W4322001242C205649164 @default.
- W4322001242 hasConceptScore W4322001242C2779429622 @default.
- W4322001242 hasConceptScore W4322001242C2779892437 @default.
- W4322001242 hasConceptScore W4322001242C39432304 @default.
- W4322001242 hasConceptScore W4322001242C41008148 @default.
- W4322001242 hasConceptScore W4322001242C521259446 @default.
- W4322001242 hasConceptScore W4322001242C548081761 @default.
- W4322001242 hasConceptScore W4322001242C58640448 @default.
- W4322001242 hasConceptScore W4322001242C78519656 @default.
- W4322001242 hasConceptScore W4322001242C86803240 @default.
- W4322001242 hasLocation W43220012421 @default.
- W4322001242 hasOpenAccess W4322001242 @default.
- W4322001242 hasPrimaryLocation W43220012421 @default.
- W4322001242 hasRelatedWork W3014300295 @default.
- W4322001242 hasRelatedWork W3207550279 @default.
- W4322001242 hasRelatedWork W4223943233 @default.
- W4322001242 hasRelatedWork W4225161397 @default.
- W4322001242 hasRelatedWork W4285234143 @default.
- W4322001242 hasRelatedWork W4309045103 @default.
- W4322001242 hasRelatedWork W4312200629 @default.
- W4322001242 hasRelatedWork W4360585206 @default.
- W4322001242 hasRelatedWork W4364306694 @default.
- W4322001242 hasRelatedWork W4380086463 @default.
- W4322001242 isParatext "false" @default.
- W4322001242 isRetracted "false" @default.
- W4322001242 workType "article" @default.