Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322002788> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4322002788 abstract "Since PM2.5 (particulate matter with an aerodynamic diameter of less than 2.5 µm) directly threatens public health, in order to take appropriate measures(prevention) in advance, the Korea Ministry of Environment(MOE) has been implementing PM10 forecast nationwide since February 2014. PM2.5 forecasts have been implemented nationwide since January 2015. The currently implemented PM forecast by the MOE subdivides the country into 19 regions, and forecasts the level of PM in 4 stages of “Good”, “Moderate”, “Unhealthy”, and “Very unhealthy”.Currently PM air quality forecasting system operated by the MOE is based on a numerical forecast model along with a weather and emission model. Numerical forecasting model has fundamental limitations such as the uncertainty of input data such as emissions and meteorological data, and the numerical model itself. Recently, many studies on predicting PM using artificial intelligence such as DNN, RNN, LSTM, and CNN have been conducted to overcome the limitations of numerical models.In this study, in order to improve the prediction performance of the numerical model, past observational data (air quality and meteorological data) and numerical forecasting model data (chemical transport model) are used as input data. The machine learning model consists of DNN and Seq2Seq, and predicts 3 days (D+0, D+1, D+2) using 6-hour and 1-hour average input data, respectively. The PM2.5 concentrations predicted by the machine learning model and the numerical model were compared with the PM2.5 measurements.The machine learning models were trained for input data from 2015 to 2020, and their PM forecasting performance was tested for 2021. Compared to the numerical model, the machine learning model tended to increase ACC and be similar or lower to FAR and POD.Time series trend was showed machine learning PM forecasting trend is more similar to PM measurements compared with numerical model. Especially, machine learning forecasting model can appropriately predict PM low and high concentrations that numerical model is used to overestimate.Machine learning forecasting model with DNN and Seq2Seq can found improvement of PM forecasting performance compared with numerical forecasting model. However, the machine learning model has limitations that the model can not consider external inflow effects.In order to overcome the drawback, the models should be updated and added some other machine learning module such as CNN with spatial features of PM concentrations.  Acknowledgements This study was supported in part by the ‘Experts Training Graduate Program for Particulate Matter Management’ from the Ministry of Environment, Korea and by a grant from the National Institute of Environmental Research (NIER), funded by the Ministry of Environment (ME) of the Republic of Korea (NIER-2022-04-02-068).  " @default.
- W4322002788 created "2023-02-26" @default.
- W4322002788 creator A5006834661 @default.
- W4322002788 creator A5013460012 @default.
- W4322002788 creator A5024556517 @default.
- W4322002788 creator A5026487799 @default.
- W4322002788 creator A5031104077 @default.
- W4322002788 creator A5044902775 @default.
- W4322002788 creator A5056664819 @default.
- W4322002788 creator A5069220164 @default.
- W4322002788 date "2023-05-15" @default.
- W4322002788 modified "2023-10-18" @default.
- W4322002788 title "Comparison of PM2.5 concentrations prediction model performance using Artificial Intelligence" @default.
- W4322002788 doi "https://doi.org/10.5194/egusphere-egu23-12566" @default.
- W4322002788 hasPublicationYear "2023" @default.
- W4322002788 type Work @default.
- W4322002788 citedByCount "0" @default.
- W4322002788 crossrefType "posted-content" @default.
- W4322002788 hasAuthorship W4322002788A5006834661 @default.
- W4322002788 hasAuthorship W4322002788A5013460012 @default.
- W4322002788 hasAuthorship W4322002788A5024556517 @default.
- W4322002788 hasAuthorship W4322002788A5026487799 @default.
- W4322002788 hasAuthorship W4322002788A5031104077 @default.
- W4322002788 hasAuthorship W4322002788A5044902775 @default.
- W4322002788 hasAuthorship W4322002788A5056664819 @default.
- W4322002788 hasAuthorship W4322002788A5069220164 @default.
- W4322002788 hasConcept C105795698 @default.
- W4322002788 hasConcept C119857082 @default.
- W4322002788 hasConcept C126314574 @default.
- W4322002788 hasConcept C138885662 @default.
- W4322002788 hasConcept C139945424 @default.
- W4322002788 hasConcept C147947694 @default.
- W4322002788 hasConcept C153294291 @default.
- W4322002788 hasConcept C154945302 @default.
- W4322002788 hasConcept C205649164 @default.
- W4322002788 hasConcept C27206212 @default.
- W4322002788 hasConcept C2986605239 @default.
- W4322002788 hasConcept C33923547 @default.
- W4322002788 hasConcept C41008148 @default.
- W4322002788 hasConcept C44154836 @default.
- W4322002788 hasConcept C45804977 @default.
- W4322002788 hasConcept C500300565 @default.
- W4322002788 hasConcept C521751864 @default.
- W4322002788 hasConceptScore W4322002788C105795698 @default.
- W4322002788 hasConceptScore W4322002788C119857082 @default.
- W4322002788 hasConceptScore W4322002788C126314574 @default.
- W4322002788 hasConceptScore W4322002788C138885662 @default.
- W4322002788 hasConceptScore W4322002788C139945424 @default.
- W4322002788 hasConceptScore W4322002788C147947694 @default.
- W4322002788 hasConceptScore W4322002788C153294291 @default.
- W4322002788 hasConceptScore W4322002788C154945302 @default.
- W4322002788 hasConceptScore W4322002788C205649164 @default.
- W4322002788 hasConceptScore W4322002788C27206212 @default.
- W4322002788 hasConceptScore W4322002788C2986605239 @default.
- W4322002788 hasConceptScore W4322002788C33923547 @default.
- W4322002788 hasConceptScore W4322002788C41008148 @default.
- W4322002788 hasConceptScore W4322002788C44154836 @default.
- W4322002788 hasConceptScore W4322002788C45804977 @default.
- W4322002788 hasConceptScore W4322002788C500300565 @default.
- W4322002788 hasConceptScore W4322002788C521751864 @default.
- W4322002788 hasLocation W43220027881 @default.
- W4322002788 hasOpenAccess W4322002788 @default.
- W4322002788 hasPrimaryLocation W43220027881 @default.
- W4322002788 hasRelatedWork W2126056363 @default.
- W4322002788 hasRelatedWork W2563938269 @default.
- W4322002788 hasRelatedWork W2578633269 @default.
- W4322002788 hasRelatedWork W2988342776 @default.
- W4322002788 hasRelatedWork W2995227436 @default.
- W4322002788 hasRelatedWork W3160244858 @default.
- W4322002788 hasRelatedWork W3198273881 @default.
- W4322002788 hasRelatedWork W4293106614 @default.
- W4322002788 hasRelatedWork W4312949351 @default.
- W4322002788 hasRelatedWork W85708674 @default.
- W4322002788 isParatext "false" @default.
- W4322002788 isRetracted "false" @default.
- W4322002788 workType "article" @default.