Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322002995> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W4322002995 abstract "Projections of the future development of the Antarctic Ice Sheet still exhibit a large degree of uncertainty due to difficulties in constraining parameters of ice-flow models such as basal boundary conditions. Deriving better estimates of these parameters from radargrams could greatly improve model accuracy, but integration of inferred radar attributes into ice-flow models is not yet widespread.Here, we develop a radar forward modeling framework that is geared to train a machine learning workflow (likely simulation-based inference) to extract radar attributes such as the internal stratigraphy and basal boundary conditions (e.g., frozen vs. wet) from radar data. The workflow starts with ice-dynamic forward models predicting physically sound stratigraphies and internal/basal temperatures for synthetic flow settings using shallow ice, shallow shelf and higher order ice-flow models. This is then used as input to the radar simulator (here gprMax), which calculates the radar image produced by such a stratigraphy. To do so, we match the synthetic permittivities of the modeled stratigraphy with statistical properties known from ice-core logging data and prescribe temperature dependent attenuation via an Arrhenius relation. gprMax is optimized for acceleration using GPUs which can be efficiently employed when solving the FDTD discretized Maxwell equations. Currently, 200 m wide and 500 m deep sections can be simulated on a single NVIDIA GeForce RTX 2070 Super graphics card within 390 minutes. The runtime can be substantially improved in a HPC environment. In order to obtain radar simulations comparable with observations, we also add system specific noise and contributions from volume scattering with variable surface roughness. Here, we focus on 50 MHz pulse radar for which we have many observational counterparts. However, the workflow is designed to encompass multiple ice-dynamic settings and different radar frequencies.The application of physical forward models will result in physically meaningful radargrams which are indistinguishable from observations. This provides a tool to create datasets for training machine learning workflows for inference without the limitations of hand-labeled data." @default.
- W4322002995 created "2023-02-26" @default.
- W4322002995 creator A5004159217 @default.
- W4322002995 creator A5011904868 @default.
- W4322002995 creator A5040966381 @default.
- W4322002995 creator A5085929292 @default.
- W4322002995 date "2023-05-15" @default.
- W4322002995 modified "2023-09-26" @default.
- W4322002995 title "Radar forward modelling as a precursor for statistical inference" @default.
- W4322002995 doi "https://doi.org/10.5194/egusphere-egu23-12495" @default.
- W4322002995 hasPublicationYear "2023" @default.
- W4322002995 type Work @default.
- W4322002995 citedByCount "0" @default.
- W4322002995 crossrefType "posted-content" @default.
- W4322002995 hasAuthorship W4322002995A5004159217 @default.
- W4322002995 hasAuthorship W4322002995A5011904868 @default.
- W4322002995 hasAuthorship W4322002995A5040966381 @default.
- W4322002995 hasAuthorship W4322002995A5085929292 @default.
- W4322002995 hasConcept C109281948 @default.
- W4322002995 hasConcept C11413529 @default.
- W4322002995 hasConcept C127313418 @default.
- W4322002995 hasConcept C154945302 @default.
- W4322002995 hasConcept C165205528 @default.
- W4322002995 hasConcept C41008148 @default.
- W4322002995 hasConcept C459310 @default.
- W4322002995 hasConcept C554190296 @default.
- W4322002995 hasConcept C62649853 @default.
- W4322002995 hasConcept C71813955 @default.
- W4322002995 hasConcept C76155785 @default.
- W4322002995 hasConcept C77928131 @default.
- W4322002995 hasConceptScore W4322002995C109281948 @default.
- W4322002995 hasConceptScore W4322002995C11413529 @default.
- W4322002995 hasConceptScore W4322002995C127313418 @default.
- W4322002995 hasConceptScore W4322002995C154945302 @default.
- W4322002995 hasConceptScore W4322002995C165205528 @default.
- W4322002995 hasConceptScore W4322002995C41008148 @default.
- W4322002995 hasConceptScore W4322002995C459310 @default.
- W4322002995 hasConceptScore W4322002995C554190296 @default.
- W4322002995 hasConceptScore W4322002995C62649853 @default.
- W4322002995 hasConceptScore W4322002995C71813955 @default.
- W4322002995 hasConceptScore W4322002995C76155785 @default.
- W4322002995 hasConceptScore W4322002995C77928131 @default.
- W4322002995 hasLocation W43220029951 @default.
- W4322002995 hasOpenAccess W4322002995 @default.
- W4322002995 hasPrimaryLocation W43220029951 @default.
- W4322002995 hasRelatedWork W1976779014 @default.
- W4322002995 hasRelatedWork W2007858365 @default.
- W4322002995 hasRelatedWork W2008374561 @default.
- W4322002995 hasRelatedWork W2065602538 @default.
- W4322002995 hasRelatedWork W2071091411 @default.
- W4322002995 hasRelatedWork W2095207358 @default.
- W4322002995 hasRelatedWork W2116555895 @default.
- W4322002995 hasRelatedWork W2143509088 @default.
- W4322002995 hasRelatedWork W2903460320 @default.
- W4322002995 hasRelatedWork W3132046273 @default.
- W4322002995 isParatext "false" @default.
- W4322002995 isRetracted "false" @default.
- W4322002995 workType "article" @default.