Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322004534> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4322004534 abstract "Accurate streamflow forecasting can help minimizing the negative impacts of hydrological events such as floods and droughts. To address this challenge, we explore here artificial neural networks models (ANNs) for streamflow forecasting. These models, which have been proven successful in other fields, may offer improved accuracy and efficiency compared to traditional conceptually-based forecasting approaches.The goal of this study is to compare the performance of a traditional conceptual rainfall-runoff (hydrological) model with an artificial neural network (ANN) model for streamflow forecasting. As a test case, we use the Severn catchment in the United Kingdom. The adopted ANN model has a long short-term memory (LSTM) architecture with two hidden layers, each with 256 neurons. The model is trained on a 25-year dataset from 1988 to 2013 and tested on a 3-year dataset (from 2014 to 2016). It is also validated on a 3-year dataset (from 2017 to 2020, 2019 being a particularly wet year), to assess its performance in extreme hydrological conditions. The study focuses on daily and hourly predictions.To conduct this study, the conceptual hydrological model called Superflex is used as a benchmark. Both models are first evaluated using the Nash-Sutcliffe Efficiency (NSE) score. To enable a fair and accurate comparison, both models share the same inputs (i.e. meteorological forcings: total precipitation, daily maximum and minimum temperatures, daylight duration, mean surface downward short wave radiation flux, and vapor pressure). The ANN model was implemented using the Neuralhydrology library developed by F. Kratzert.In our study, we found that LSTM model is able to provide more accurate one-day forecasts than the  hydrological model Superflex. For the daily predictions, the average NSE score using the LSTM model is 0.85 (with an average NSE score of 0.99 for training period, and 0.85 for validation period), which is higher than the NSE score of 0.74 achieved by the Superflex model (with a score of 0.84 for training period).The hourly prediction using NSE with the superflex model had a score of 0.88, with a score of 0.7 during training. The LSTM model had an average NSE score of 0.87, with an average score of 0.99 during training and an average score of 0.85 during validation.These results were obtained without adjusting the hyperparameters and by training the model only on data from the Severn watershed.The ANN model has demonstrated promising results compared to a state-of-the-art conceptual hydrological model in our studies. We will further compare both models using different training dataset periods, and different catchements. These additional tests will provide more information on the capabilities of the LSTM model and help to confirm its effectiveness." @default.
- W4322004534 created "2023-02-26" @default.
- W4322004534 creator A5003275590 @default.
- W4322004534 creator A5042568281 @default.
- W4322004534 creator A5069539994 @default.
- W4322004534 creator A5076569481 @default.
- W4322004534 date "2023-05-15" @default.
- W4322004534 modified "2023-09-27" @default.
- W4322004534 title "Comparison of a conceptual rainfall-runoff model with an artificial neural network model for streamflow prediction" @default.
- W4322004534 doi "https://doi.org/10.5194/egusphere-egu23-13493" @default.
- W4322004534 hasPublicationYear "2023" @default.
- W4322004534 type Work @default.
- W4322004534 citedByCount "0" @default.
- W4322004534 crossrefType "posted-content" @default.
- W4322004534 hasAuthorship W4322004534A5003275590 @default.
- W4322004534 hasAuthorship W4322004534A5042568281 @default.
- W4322004534 hasAuthorship W4322004534A5069539994 @default.
- W4322004534 hasAuthorship W4322004534A5076569481 @default.
- W4322004534 hasConcept C107054158 @default.
- W4322004534 hasConcept C119857082 @default.
- W4322004534 hasConcept C126197015 @default.
- W4322004534 hasConcept C126645576 @default.
- W4322004534 hasConcept C127313418 @default.
- W4322004534 hasConcept C153294291 @default.
- W4322004534 hasConcept C185798385 @default.
- W4322004534 hasConcept C18903297 @default.
- W4322004534 hasConcept C205649164 @default.
- W4322004534 hasConcept C39432304 @default.
- W4322004534 hasConcept C41008148 @default.
- W4322004534 hasConcept C49204034 @default.
- W4322004534 hasConcept C50477045 @default.
- W4322004534 hasConcept C50644808 @default.
- W4322004534 hasConcept C53739315 @default.
- W4322004534 hasConcept C58640448 @default.
- W4322004534 hasConcept C86803240 @default.
- W4322004534 hasConceptScore W4322004534C107054158 @default.
- W4322004534 hasConceptScore W4322004534C119857082 @default.
- W4322004534 hasConceptScore W4322004534C126197015 @default.
- W4322004534 hasConceptScore W4322004534C126645576 @default.
- W4322004534 hasConceptScore W4322004534C127313418 @default.
- W4322004534 hasConceptScore W4322004534C153294291 @default.
- W4322004534 hasConceptScore W4322004534C185798385 @default.
- W4322004534 hasConceptScore W4322004534C18903297 @default.
- W4322004534 hasConceptScore W4322004534C205649164 @default.
- W4322004534 hasConceptScore W4322004534C39432304 @default.
- W4322004534 hasConceptScore W4322004534C41008148 @default.
- W4322004534 hasConceptScore W4322004534C49204034 @default.
- W4322004534 hasConceptScore W4322004534C50477045 @default.
- W4322004534 hasConceptScore W4322004534C50644808 @default.
- W4322004534 hasConceptScore W4322004534C53739315 @default.
- W4322004534 hasConceptScore W4322004534C58640448 @default.
- W4322004534 hasConceptScore W4322004534C86803240 @default.
- W4322004534 hasLocation W43220045341 @default.
- W4322004534 hasOpenAccess W4322004534 @default.
- W4322004534 hasPrimaryLocation W43220045341 @default.
- W4322004534 hasRelatedWork W136635732 @default.
- W4322004534 hasRelatedWork W1822426157 @default.
- W4322004534 hasRelatedWork W2010441009 @default.
- W4322004534 hasRelatedWork W2142704078 @default.
- W4322004534 hasRelatedWork W2159799950 @default.
- W4322004534 hasRelatedWork W2350872489 @default.
- W4322004534 hasRelatedWork W2356981888 @default.
- W4322004534 hasRelatedWork W2373852752 @default.
- W4322004534 hasRelatedWork W2730874230 @default.
- W4322004534 hasRelatedWork W4377247768 @default.
- W4322004534 isParatext "false" @default.
- W4322004534 isRetracted "false" @default.
- W4322004534 workType "article" @default.