Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322004546> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4322004546 abstract "Flood early warning systems are vital for preventing flood damages and for reducing disaster risks. Such systems are particularly important for forecasting compound events where multiple, often dependent flood drivers co-occur and interact. In this research an early warning system for prediction of coastal-fluvial floods is developed to provide a robust, cost-effective and time-efficient framework for management of flood risks and impacts. This three-step method combines a cascade of three linked models: (1) statistical model that determines probabilities of multiple-driver flood events, (2) hydrodynamic model forced by outputs from the statistical model, and finally (3) machine learning (ML) model that uses hydrodynamic outputs from various probability flood events to train the ML algorithm in order to predict the spatially and temporarily variable inundation patterns resulting from a combination of coastal and fluvial flood drivers occurring simultaneously.The method has been utilized for the case of Cork City, located in the south-west of Ireland, which has a long history of fluvial-coastal flooding. The Lee  River channelling through the city centre may generate a substantial flood when the downstream river flow draining to the estuary coincides with the sea water propagating upstream on a flood tide. For this hydrological domain the statistical model employs the univariate extreme values analysis and copula functions to calculate joint probabilities of river discharges and sea water levels (astronomical tides and surge residuals) occurring simultaneously. The return levels for these two components along a return level curve produced by the copula function are used to generate synthetic timeseries, which serve as water level boundary conditions for a hydrodynamic flood model. The multi-scale nested flood model (MSN_Flood) was configured for Cork City at 2m resolution to simulate an unsteady, non-uniform flow in the Lee  River and a flood wave propagation over urban floodplains. The ensemble hydrodynamic model outputs are ultimately used to train and test a range machine learning models for prediction of flood extents and water depths. In total, 23 machine learning algorithms including: Artificial Neural Network, Decision Tree, Gaussian Process Regression, Linear Regression, Radial Basis Function, Support Vector Machine, and Support Vector Regression were employed to confirm that the ML algorithm can be used successfully to predict the flood inundation depths over urban floodplains for a given set of compound flood drivers. Here, the limited flood conditioning factors taken into account to analyse floods are the upstream flood hydrographs and downstream sea water level timeseries. To evaluate model performance, different statistical skill scores were computed. Results indicated that in most pixels, the Gaussian Process Regression model performs better than the other models.The main contribution of this research is to demonstrate the ML models can be used in early warning systems for flood prediction and to give insight into the most suitable models in terms of robustness, accuracy, effectiveness, and speed. The findings demonstrate that ML models do help in flood water propagation mapping and assessment of flood risk under various compound flood scenarios." @default.
- W4322004546 created "2023-02-26" @default.
- W4322004546 creator A5027633124 @default.
- W4322004546 creator A5059886112 @default.
- W4322004546 creator A5063553704 @default.
- W4322004546 date "2023-05-15" @default.
- W4322004546 modified "2023-09-27" @default.
- W4322004546 title "Machine learning modelling of compound flood events" @default.
- W4322004546 doi "https://doi.org/10.5194/egusphere-egu23-13083" @default.
- W4322004546 hasPublicationYear "2023" @default.
- W4322004546 type Work @default.
- W4322004546 citedByCount "0" @default.
- W4322004546 crossrefType "posted-content" @default.
- W4322004546 hasAuthorship W4322004546A5027633124 @default.
- W4322004546 hasAuthorship W4322004546A5059886112 @default.
- W4322004546 hasAuthorship W4322004546A5063553704 @default.
- W4322004546 hasConcept C109007969 @default.
- W4322004546 hasConcept C111368507 @default.
- W4322004546 hasConcept C112959462 @default.
- W4322004546 hasConcept C114793014 @default.
- W4322004546 hasConcept C11693305 @default.
- W4322004546 hasConcept C127313418 @default.
- W4322004546 hasConcept C132651083 @default.
- W4322004546 hasConcept C15744967 @default.
- W4322004546 hasConcept C166957645 @default.
- W4322004546 hasConcept C171878848 @default.
- W4322004546 hasConcept C183195422 @default.
- W4322004546 hasConcept C186594467 @default.
- W4322004546 hasConcept C187320778 @default.
- W4322004546 hasConcept C205649164 @default.
- W4322004546 hasConcept C2777774347 @default.
- W4322004546 hasConcept C2778924419 @default.
- W4322004546 hasConcept C29825287 @default.
- W4322004546 hasConcept C39432304 @default.
- W4322004546 hasConcept C41008148 @default.
- W4322004546 hasConcept C542102704 @default.
- W4322004546 hasConcept C74256435 @default.
- W4322004546 hasConcept C76155785 @default.
- W4322004546 hasConcept C76886044 @default.
- W4322004546 hasConceptScore W4322004546C109007969 @default.
- W4322004546 hasConceptScore W4322004546C111368507 @default.
- W4322004546 hasConceptScore W4322004546C112959462 @default.
- W4322004546 hasConceptScore W4322004546C114793014 @default.
- W4322004546 hasConceptScore W4322004546C11693305 @default.
- W4322004546 hasConceptScore W4322004546C127313418 @default.
- W4322004546 hasConceptScore W4322004546C132651083 @default.
- W4322004546 hasConceptScore W4322004546C15744967 @default.
- W4322004546 hasConceptScore W4322004546C166957645 @default.
- W4322004546 hasConceptScore W4322004546C171878848 @default.
- W4322004546 hasConceptScore W4322004546C183195422 @default.
- W4322004546 hasConceptScore W4322004546C186594467 @default.
- W4322004546 hasConceptScore W4322004546C187320778 @default.
- W4322004546 hasConceptScore W4322004546C205649164 @default.
- W4322004546 hasConceptScore W4322004546C2777774347 @default.
- W4322004546 hasConceptScore W4322004546C2778924419 @default.
- W4322004546 hasConceptScore W4322004546C29825287 @default.
- W4322004546 hasConceptScore W4322004546C39432304 @default.
- W4322004546 hasConceptScore W4322004546C41008148 @default.
- W4322004546 hasConceptScore W4322004546C542102704 @default.
- W4322004546 hasConceptScore W4322004546C74256435 @default.
- W4322004546 hasConceptScore W4322004546C76155785 @default.
- W4322004546 hasConceptScore W4322004546C76886044 @default.
- W4322004546 hasLocation W43220045461 @default.
- W4322004546 hasOpenAccess W4322004546 @default.
- W4322004546 hasPrimaryLocation W43220045461 @default.
- W4322004546 hasRelatedWork W1484856069 @default.
- W4322004546 hasRelatedWork W1584050980 @default.
- W4322004546 hasRelatedWork W1966662679 @default.
- W4322004546 hasRelatedWork W2720551830 @default.
- W4322004546 hasRelatedWork W2952484941 @default.
- W4322004546 hasRelatedWork W3204039725 @default.
- W4322004546 hasRelatedWork W4210326969 @default.
- W4322004546 hasRelatedWork W4220782440 @default.
- W4322004546 hasRelatedWork W4322004546 @default.
- W4322004546 hasRelatedWork W3148994622 @default.
- W4322004546 isParatext "false" @default.
- W4322004546 isRetracted "false" @default.
- W4322004546 workType "article" @default.