Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322004552> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4322004552 abstract "Clouds of all kinds play a large role in many atmospheric processes including, e.g. radiation and moisture transport, and their type allows an insight into the dynamics going on in the atmosphere. Hence, the observation of clouds from Earth's surface has always been important to analyse the current weather and its evolution during the day. However, cloud observations by human observers are labour-intensive and hence also costy. In addition to this, cloud classifications done by human observers are always subjective to some extent. Finding an efficient method for automated observations would solve both problems. Although clouds have already been operationally observed using satellites for decades, observations from the surface shed a light on a different set of characteristics. Moreover, the WMO also defined their cloud classification standards according to visual cloud properties when observations are done at the Earth’s surface. Thus, in this work a utilization of machine learning methods to classify clouds from RGB pictures taken at the surface is proposed. Explicitly, a conditional Generative Adversarial Network (cGAN) is trained to discriminate between 30 different categories, 10 for each cloud level - low, medium and high; Besides showing robust results in different image classification problems, an additional advantage of using a GAN instead of a classical convolutional neural network is that its output can also artificially enhance the size of the training data set. This is especially useful if the number of available pictures is unevenly distributed among the different classes. Additional background observations like cloud cover and cloud base height can also be used to further improve the performance of the cGAN. Together with a cloud camera, a properly trained cGAN can observe and classify clouds with a high temporal resolution of the order of seconds, which can be used, e.g. for model verification or to efficiently monitor the current status of the weather as well as its short-time evolution. First results will also be presented." @default.
- W4322004552 created "2023-02-26" @default.
- W4322004552 creator A5009082154 @default.
- W4322004552 creator A5013883011 @default.
- W4322004552 creator A5025831962 @default.
- W4322004552 date "2023-05-15" @default.
- W4322004552 modified "2023-09-29" @default.
- W4322004552 title "Using cGAN for cloud classification from RGB pictures" @default.
- W4322004552 doi "https://doi.org/10.5194/egusphere-egu23-13013" @default.
- W4322004552 hasPublicationYear "2023" @default.
- W4322004552 type Work @default.
- W4322004552 citedByCount "0" @default.
- W4322004552 crossrefType "posted-content" @default.
- W4322004552 hasAuthorship W4322004552A5009082154 @default.
- W4322004552 hasAuthorship W4322004552A5013883011 @default.
- W4322004552 hasAuthorship W4322004552A5025831962 @default.
- W4322004552 hasConcept C108583219 @default.
- W4322004552 hasConcept C111919701 @default.
- W4322004552 hasConcept C127313418 @default.
- W4322004552 hasConcept C142773270 @default.
- W4322004552 hasConcept C153294291 @default.
- W4322004552 hasConcept C154945302 @default.
- W4322004552 hasConcept C177264268 @default.
- W4322004552 hasConcept C199360897 @default.
- W4322004552 hasConcept C205649164 @default.
- W4322004552 hasConcept C206887242 @default.
- W4322004552 hasConcept C23302255 @default.
- W4322004552 hasConcept C39432304 @default.
- W4322004552 hasConcept C41008148 @default.
- W4322004552 hasConcept C62649853 @default.
- W4322004552 hasConcept C79974875 @default.
- W4322004552 hasConcept C81363708 @default.
- W4322004552 hasConcept C82990744 @default.
- W4322004552 hasConceptScore W4322004552C108583219 @default.
- W4322004552 hasConceptScore W4322004552C111919701 @default.
- W4322004552 hasConceptScore W4322004552C127313418 @default.
- W4322004552 hasConceptScore W4322004552C142773270 @default.
- W4322004552 hasConceptScore W4322004552C153294291 @default.
- W4322004552 hasConceptScore W4322004552C154945302 @default.
- W4322004552 hasConceptScore W4322004552C177264268 @default.
- W4322004552 hasConceptScore W4322004552C199360897 @default.
- W4322004552 hasConceptScore W4322004552C205649164 @default.
- W4322004552 hasConceptScore W4322004552C206887242 @default.
- W4322004552 hasConceptScore W4322004552C23302255 @default.
- W4322004552 hasConceptScore W4322004552C39432304 @default.
- W4322004552 hasConceptScore W4322004552C41008148 @default.
- W4322004552 hasConceptScore W4322004552C62649853 @default.
- W4322004552 hasConceptScore W4322004552C79974875 @default.
- W4322004552 hasConceptScore W4322004552C81363708 @default.
- W4322004552 hasConceptScore W4322004552C82990744 @default.
- W4322004552 hasLocation W43220045521 @default.
- W4322004552 hasOpenAccess W4322004552 @default.
- W4322004552 hasPrimaryLocation W43220045521 @default.
- W4322004552 hasRelatedWork W1481808765 @default.
- W4322004552 hasRelatedWork W1991354553 @default.
- W4322004552 hasRelatedWork W2082197691 @default.
- W4322004552 hasRelatedWork W2105174258 @default.
- W4322004552 hasRelatedWork W2134729018 @default.
- W4322004552 hasRelatedWork W2163126167 @default.
- W4322004552 hasRelatedWork W2557924869 @default.
- W4322004552 hasRelatedWork W3148141711 @default.
- W4322004552 hasRelatedWork W3213960077 @default.
- W4322004552 hasRelatedWork W1828688001 @default.
- W4322004552 isParatext "false" @default.
- W4322004552 isRetracted "false" @default.
- W4322004552 workType "article" @default.