Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322004566> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4322004566 abstract "Operational Tsunami Early Warning Systems (TEWS) are crucial for mitigation and highly reducing the impact of tsunamis on coastal communities worldwide. In the North-East Atlantic, the Mediterranean, and connected Seas (NEAM) region, these systems have historically utilized Decision Matrices for this purpose. The very short time between tsunami generation and landfall in this region makes it extremely challenging to use real-time simulations to produce more precise alert levels and the only way to include a computational component in the alert was to use precomputed databases. Nevertheless, in recent years, computing times for a single scenario have been progressively reduced to a few minutes or even seconds depending on the computational resources available. In particular, the EDANYA group at the University of Málaga, Spain, has focused on this topic and developed the GPU code Tsunami-HySEA for Faster Than Real Time (FTRT) tsunami simulations. This code has been implemented and tested in TEWS of several countries (such as Spain, Italy, and Chile) and has undergone extensive testing, verification and validation.In this study, we propose the use of neural networks (NN) to predict the maximum height and arrival time of tsunamis in the context of TEWS. The advantage of this approach is that the inference time required is negligible (less than one second) and that this can be done in a simple laptop. This allows to consider uncertain input information in the data and still providing the results in some seconds. As tsunamis are rare events, numerical simulations using the Tsunami-HySEA are used to train the NN model. This part of the workflow requires producing a large amount of simulations and large HPC computational resources must be used.Machine learning (ML) techniques have gained widespread adoption and are being applied in all areas of research, including tsunami modeling. In this work, we employ Multi-Layer Perceptron (MLP) neural networks to forecast the maximum height and arrival time of tsunamis at specific locations along the Chipiona-Cádiz coast in Southwestern Spain. In the present work, initially several individual models are trained and we show that they provide accurate results. Then ensemble techniques, which combine multiple single models in order to reduce variance, are explored. The ensemble models often produce improved predictions.The proposed methodology is tested for tsunamis generated by earthquakes on the Horseshoe fault. The goal is to develop a neural network (NN) model for predicting the maximum height and arrival time of such tsunamis at multiple coastal locations simultaneously. The results of our analysis show that deep learning is a promising approach for this task. The proposed NN models produce errors of less than 6 cm for the maximum wave height and less then 212 s for the arrival time for tsunamis generated on the Horseshoe fault in the Northeastern Atlantic." @default.
- W4322004566 created "2023-02-26" @default.
- W4322004566 creator A5012479853 @default.
- W4322004566 creator A5033308925 @default.
- W4322004566 creator A5037928452 @default.
- W4322004566 creator A5045999747 @default.
- W4322004566 creator A5087282834 @default.
- W4322004566 date "2023-05-15" @default.
- W4322004566 modified "2023-10-03" @default.
- W4322004566 title "Use of Neural Networks for Tsunami Maximum Height and Arrival Time Predictions" @default.
- W4322004566 doi "https://doi.org/10.5194/egusphere-egu23-12935" @default.
- W4322004566 hasPublicationYear "2023" @default.
- W4322004566 type Work @default.
- W4322004566 citedByCount "0" @default.
- W4322004566 crossrefType "posted-content" @default.
- W4322004566 hasAuthorship W4322004566A5012479853 @default.
- W4322004566 hasAuthorship W4322004566A5033308925 @default.
- W4322004566 hasAuthorship W4322004566A5037928452 @default.
- W4322004566 hasAuthorship W4322004566A5045999747 @default.
- W4322004566 hasAuthorship W4322004566A5087282834 @default.
- W4322004566 hasBestOaLocation W43220045662 @default.
- W4322004566 hasConcept C111919701 @default.
- W4322004566 hasConcept C127313418 @default.
- W4322004566 hasConcept C127413603 @default.
- W4322004566 hasConcept C153294291 @default.
- W4322004566 hasConcept C154945302 @default.
- W4322004566 hasConcept C165205528 @default.
- W4322004566 hasConcept C166957645 @default.
- W4322004566 hasConcept C177264268 @default.
- W4322004566 hasConcept C199360897 @default.
- W4322004566 hasConcept C205649164 @default.
- W4322004566 hasConcept C22212356 @default.
- W4322004566 hasConcept C2776760102 @default.
- W4322004566 hasConcept C2779343474 @default.
- W4322004566 hasConcept C2780008327 @default.
- W4322004566 hasConcept C29825287 @default.
- W4322004566 hasConcept C3017552255 @default.
- W4322004566 hasConcept C41008148 @default.
- W4322004566 hasConcept C50644808 @default.
- W4322004566 hasConcept C76155785 @default.
- W4322004566 hasConcept C79403827 @default.
- W4322004566 hasConceptScore W4322004566C111919701 @default.
- W4322004566 hasConceptScore W4322004566C127313418 @default.
- W4322004566 hasConceptScore W4322004566C127413603 @default.
- W4322004566 hasConceptScore W4322004566C153294291 @default.
- W4322004566 hasConceptScore W4322004566C154945302 @default.
- W4322004566 hasConceptScore W4322004566C165205528 @default.
- W4322004566 hasConceptScore W4322004566C166957645 @default.
- W4322004566 hasConceptScore W4322004566C177264268 @default.
- W4322004566 hasConceptScore W4322004566C199360897 @default.
- W4322004566 hasConceptScore W4322004566C205649164 @default.
- W4322004566 hasConceptScore W4322004566C22212356 @default.
- W4322004566 hasConceptScore W4322004566C2776760102 @default.
- W4322004566 hasConceptScore W4322004566C2779343474 @default.
- W4322004566 hasConceptScore W4322004566C2780008327 @default.
- W4322004566 hasConceptScore W4322004566C29825287 @default.
- W4322004566 hasConceptScore W4322004566C3017552255 @default.
- W4322004566 hasConceptScore W4322004566C41008148 @default.
- W4322004566 hasConceptScore W4322004566C50644808 @default.
- W4322004566 hasConceptScore W4322004566C76155785 @default.
- W4322004566 hasConceptScore W4322004566C79403827 @default.
- W4322004566 hasLocation W43220045661 @default.
- W4322004566 hasLocation W43220045662 @default.
- W4322004566 hasOpenAccess W4322004566 @default.
- W4322004566 hasPrimaryLocation W43220045661 @default.
- W4322004566 hasRelatedWork W1980674291 @default.
- W4322004566 hasRelatedWork W2160620982 @default.
- W4322004566 hasRelatedWork W2281360585 @default.
- W4322004566 hasRelatedWork W2373724792 @default.
- W4322004566 hasRelatedWork W2376345092 @default.
- W4322004566 hasRelatedWork W2386387936 @default.
- W4322004566 hasRelatedWork W2748952813 @default.
- W4322004566 hasRelatedWork W2989908039 @default.
- W4322004566 hasRelatedWork W3152557933 @default.
- W4322004566 hasRelatedWork W2140808311 @default.
- W4322004566 isParatext "false" @default.
- W4322004566 isRetracted "false" @default.
- W4322004566 workType "article" @default.