Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322004624> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W4322004624 abstract "Global earth's surface is subject to adverse effects of a variety of slow and sustained geological hazards, such as land subsidence, earthquake, tectonic motion, mining, landslides, coastal erosion, volcano and permafrost, caused by natural forces and anthropogenic activities disturbance. Earth observation data enable scientists to efficiently assess ground deformation and damages posed by these hazards and result in significant resilience planning. Therefore, preserving a complete record of past, present, and future surface movements is essential for disaster risk mitigation and property protection. It is widely acknowledged that interferometric synthetic aperture radar (InSAR) is a highly effective and widely used geodetic technique for understanding the spatiotemporal evolution of historical ground surface deformation. Meanwhile, deformation prediction is crucial for preventing and mitigating geological hazards, considering the long revisit cycle of satellites and the time it takes to process data.In this study, we propose a strategy that predicts spatiotemporal InSAR time series combining independent component analysis (ICA) and Long Short-Term Memory (LSTM) machine learning model, Here ICA, as a blind signal separation method, is deployed to identify and capture the InSAR displacement signals of interest and characterize each independent time series signal, caused by various natural or anthropogenic processes. In addition, considering that ignoring heterogeneity would reduce the model's accuracy, K-means clustering approach is jointly used to divide the study area into several spatiotemporal homogeneity subregions over a large-scale region, where we assume that the points in the same cluster have similar spatiotemporal behavior. Finally, neural network models for each cluster are constructed and optimal parameters are determined. The suggested study framework is used into two real datasets with diverse deformation characteristics: land subsidence post-seismic time series. The results reveal that our suggested ICA-assisted LSTM model outperforms the original LSTM, with the average prediction accuracy for one-step prediction improved by 34% and 17%, respectively. Furthermore, we mapped the spatiotemporal predicted results of subsidence and post-seismic events in 60 days and examine their performance and limitations, the results of which show high consistency using the enhanced processing technique.The successful prediction on subsidence and post-seismic deformation further indicates that the proposed prediction strategy can be applied to monitor other large-scale geo-hazards with sustained and slow deformation for rapid decision-making and timely risk mitigation. Furthermore, the proposed prediction methodology is applicable to different scenarios of derivative applications. It has application potential in deformation time series fusion across a specified region over the last 20 years, as well as automatic cataloging for abnormal time identification of post-events over broad areas, such as landslides and volcano eruption events, by deviating from the original time series." @default.
- W4322004624 created "2023-02-26" @default.
- W4322004624 creator A5009590516 @default.
- W4322004624 creator A5010436195 @default.
- W4322004624 creator A5031847334 @default.
- W4322004624 creator A5067826216 @default.
- W4322004624 creator A5084320319 @default.
- W4322004624 creator A5085272055 @default.
- W4322004624 date "2023-05-15" @default.
- W4322004624 modified "2023-10-01" @default.
- W4322004624 title "An ICA-assisted LSTM model for spatiotemporal characterization and prediction of ground motion related to geohazards" @default.
- W4322004624 doi "https://doi.org/10.5194/egusphere-egu23-9808" @default.
- W4322004624 hasPublicationYear "2023" @default.
- W4322004624 type Work @default.
- W4322004624 citedByCount "0" @default.
- W4322004624 crossrefType "posted-content" @default.
- W4322004624 hasAuthorship W4322004624A5009590516 @default.
- W4322004624 hasAuthorship W4322004624A5010436195 @default.
- W4322004624 hasAuthorship W4322004624A5031847334 @default.
- W4322004624 hasAuthorship W4322004624A5067826216 @default.
- W4322004624 hasAuthorship W4322004624A5084320319 @default.
- W4322004624 hasAuthorship W4322004624A5085272055 @default.
- W4322004624 hasConcept C111368507 @default.
- W4322004624 hasConcept C124101348 @default.
- W4322004624 hasConcept C127313418 @default.
- W4322004624 hasConcept C154945302 @default.
- W4322004624 hasConcept C165205528 @default.
- W4322004624 hasConcept C186295008 @default.
- W4322004624 hasConcept C22286887 @default.
- W4322004624 hasConcept C39410599 @default.
- W4322004624 hasConcept C41008148 @default.
- W4322004624 hasConcept C73555534 @default.
- W4322004624 hasConcept C87360688 @default.
- W4322004624 hasConceptScore W4322004624C111368507 @default.
- W4322004624 hasConceptScore W4322004624C124101348 @default.
- W4322004624 hasConceptScore W4322004624C127313418 @default.
- W4322004624 hasConceptScore W4322004624C154945302 @default.
- W4322004624 hasConceptScore W4322004624C165205528 @default.
- W4322004624 hasConceptScore W4322004624C186295008 @default.
- W4322004624 hasConceptScore W4322004624C22286887 @default.
- W4322004624 hasConceptScore W4322004624C39410599 @default.
- W4322004624 hasConceptScore W4322004624C41008148 @default.
- W4322004624 hasConceptScore W4322004624C73555534 @default.
- W4322004624 hasConceptScore W4322004624C87360688 @default.
- W4322004624 hasLocation W43220046241 @default.
- W4322004624 hasOpenAccess W4322004624 @default.
- W4322004624 hasPrimaryLocation W43220046241 @default.
- W4322004624 hasRelatedWork W2040804258 @default.
- W4322004624 hasRelatedWork W2094811108 @default.
- W4322004624 hasRelatedWork W2133758635 @default.
- W4322004624 hasRelatedWork W2170102735 @default.
- W4322004624 hasRelatedWork W2352645798 @default.
- W4322004624 hasRelatedWork W2914085914 @default.
- W4322004624 hasRelatedWork W2941847676 @default.
- W4322004624 hasRelatedWork W2986575489 @default.
- W4322004624 hasRelatedWork W3021954438 @default.
- W4322004624 hasRelatedWork W4327563558 @default.
- W4322004624 isParatext "false" @default.
- W4322004624 isRetracted "false" @default.
- W4322004624 workType "article" @default.