Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322004630> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4322004630 abstract "Despite advances in seismic instrumentation and seismic network densities, the ability to obtain detailed images of subsurface volcanic structure is still compromised. This leaves large uncertainties in the time evolution and nature of shallow magma emplacement, for example. Ideally it is desirable to see objects at the scale of individual sills, but strong wave scattering in volcanic settings makes this difficult to achieve and tomographic images smooth out objects at this scale. Multiple scattering creates a ‘fog’ through which it is difficult to pick singly scattered (reflected) events of interest. We use a Deep Learning approach to try capture information from this full wavefield and use that to build detailed images. Specifically we employ a Fourier Neural Operator (FNO) to model and invert seismic signals in heterogeneous synthetic volcano models. The FNO is trained using 40,000+ simulations of full wavefield elastic waves propagating through these 2D models. Once trained, the forward FNO network is used to predict elastic wave propagation and is shown to accurately reproduce the seismic wavefield. That is, the FNO can act as a fast and highly efficient forward full wavefield simulator. The FNO is also trained to predict highly heterogeneous velocity models given a set of seismograms. We show that this Deep Learning approach accurately predicts known synthetic velocity models based on surprisingly small sets of input seismograms, capturing details of the velocity structure that would lie outside the ability of current seismic methods in volcano imagery. This offers a potential new approach to imaging in volcanic environments. Although the upfront training cost of 40k simulations is very large, once trained the run times for the FNO are negligible.  " @default.
- W4322004630 created "2023-02-26" @default.
- W4322004630 creator A5034844793 @default.
- W4322004630 creator A5059402597 @default.
- W4322004630 creator A5080924293 @default.
- W4322004630 date "2023-05-15" @default.
- W4322004630 modified "2023-10-18" @default.
- W4322004630 title "Seismic imaging on volcanoes using Machine Learning" @default.
- W4322004630 doi "https://doi.org/10.5194/egusphere-egu23-13136" @default.
- W4322004630 hasPublicationYear "2023" @default.
- W4322004630 type Work @default.
- W4322004630 citedByCount "0" @default.
- W4322004630 crossrefType "posted-content" @default.
- W4322004630 hasAuthorship W4322004630A5034844793 @default.
- W4322004630 hasAuthorship W4322004630A5059402597 @default.
- W4322004630 hasAuthorship W4322004630A5080924293 @default.
- W4322004630 hasConcept C11413529 @default.
- W4322004630 hasConcept C120806208 @default.
- W4322004630 hasConcept C121332964 @default.
- W4322004630 hasConcept C122959257 @default.
- W4322004630 hasConcept C127313418 @default.
- W4322004630 hasConcept C137219930 @default.
- W4322004630 hasConcept C154945302 @default.
- W4322004630 hasConcept C165205528 @default.
- W4322004630 hasConcept C169744125 @default.
- W4322004630 hasConcept C2778755073 @default.
- W4322004630 hasConcept C41008148 @default.
- W4322004630 hasConcept C50644808 @default.
- W4322004630 hasConcept C62520636 @default.
- W4322004630 hasConcept C67236022 @default.
- W4322004630 hasConcept C79675319 @default.
- W4322004630 hasConcept C8058405 @default.
- W4322004630 hasConceptScore W4322004630C11413529 @default.
- W4322004630 hasConceptScore W4322004630C120806208 @default.
- W4322004630 hasConceptScore W4322004630C121332964 @default.
- W4322004630 hasConceptScore W4322004630C122959257 @default.
- W4322004630 hasConceptScore W4322004630C127313418 @default.
- W4322004630 hasConceptScore W4322004630C137219930 @default.
- W4322004630 hasConceptScore W4322004630C154945302 @default.
- W4322004630 hasConceptScore W4322004630C165205528 @default.
- W4322004630 hasConceptScore W4322004630C169744125 @default.
- W4322004630 hasConceptScore W4322004630C2778755073 @default.
- W4322004630 hasConceptScore W4322004630C41008148 @default.
- W4322004630 hasConceptScore W4322004630C50644808 @default.
- W4322004630 hasConceptScore W4322004630C62520636 @default.
- W4322004630 hasConceptScore W4322004630C67236022 @default.
- W4322004630 hasConceptScore W4322004630C79675319 @default.
- W4322004630 hasConceptScore W4322004630C8058405 @default.
- W4322004630 hasLocation W43220046301 @default.
- W4322004630 hasOpenAccess W4322004630 @default.
- W4322004630 hasPrimaryLocation W43220046301 @default.
- W4322004630 hasRelatedWork W1966798010 @default.
- W4322004630 hasRelatedWork W2047138314 @default.
- W4322004630 hasRelatedWork W2236195195 @default.
- W4322004630 hasRelatedWork W2350109283 @default.
- W4322004630 hasRelatedWork W2617519613 @default.
- W4322004630 hasRelatedWork W3088907789 @default.
- W4322004630 hasRelatedWork W3125706173 @default.
- W4322004630 hasRelatedWork W3184429278 @default.
- W4322004630 hasRelatedWork W4315701818 @default.
- W4322004630 hasRelatedWork W4362578045 @default.
- W4322004630 isParatext "false" @default.
- W4322004630 isRetracted "false" @default.
- W4322004630 workType "article" @default.