Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322004807> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4322004807 abstract "Landslide displacement prediction is an essential component in landslide early warning system. The displacement prediction based on in-suit monitoring performs excellently but is expensive, which limited its promotion in less-developing regions. In this study, we propose a cost-effective landslide displacement prediction method with the combination of Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) technique and Artificial Bee Colony and Kernel-based Extreme Learning Machine (ABC-KELM). Two large slow-moving landslides in the Three Gorges Reservoir area, namely Shuping landslide and Muyubao landslide, are selected as study cases. We first extract the surface displacement sequences of both landslides through the MT-InSAR and the spaceborne Copernicus Sentinel-1 SAR imagery. The original displacement sequences are decomposed into trend terms, periodic terms, and noise using wavelet analysis. The modelling inputs of trend and periodic displacements are determined by analyzing the relationship between their influencing factors and deformation. The trend and periodic displacement are respectively predicted using ABC-KELM, and summing both predicted displacement to get total displacement. By comparing the displacement obtained by the Global Positioning System in both landslides, we find the MT-InSAR can monitor landslide displacement accurately. Prediction results demonstrate that the ABC algorithm can effectively optimize the parameters of the KELM. ABC-KELM outperforms the commonly used algorithms of extreme learning machine and support vector machine. Its root mean square error, relation coefficient, and mean absolute percentage error is 5.460, 0.022, and 0.990, respectively. Our proposed method is cost-effective in landslide displacement prediction, which can be recommended in susceptible regions." @default.
- W4322004807 created "2023-02-26" @default.
- W4322004807 creator A5000099961 @default.
- W4322004807 creator A5004928216 @default.
- W4322004807 creator A5022780724 @default.
- W4322004807 creator A5033632697 @default.
- W4322004807 creator A5053751159 @default.
- W4322004807 creator A5069343419 @default.
- W4322004807 creator A5084320319 @default.
- W4322004807 creator A5089766675 @default.
- W4322004807 date "2023-05-15" @default.
- W4322004807 modified "2023-10-01" @default.
- W4322004807 title "Displacement prediction of large slow-moving landslide by means of MT-InSAR and ABC-KELM methods" @default.
- W4322004807 doi "https://doi.org/10.5194/egusphere-egu23-9229" @default.
- W4322004807 hasPublicationYear "2023" @default.
- W4322004807 type Work @default.
- W4322004807 citedByCount "0" @default.
- W4322004807 crossrefType "posted-content" @default.
- W4322004807 hasAuthorship W4322004807A5000099961 @default.
- W4322004807 hasAuthorship W4322004807A5004928216 @default.
- W4322004807 hasAuthorship W4322004807A5022780724 @default.
- W4322004807 hasAuthorship W4322004807A5033632697 @default.
- W4322004807 hasAuthorship W4322004807A5053751159 @default.
- W4322004807 hasAuthorship W4322004807A5069343419 @default.
- W4322004807 hasAuthorship W4322004807A5084320319 @default.
- W4322004807 hasAuthorship W4322004807A5089766675 @default.
- W4322004807 hasConcept C107551265 @default.
- W4322004807 hasConcept C11413529 @default.
- W4322004807 hasConcept C127313418 @default.
- W4322004807 hasConcept C13280743 @default.
- W4322004807 hasConcept C154945302 @default.
- W4322004807 hasConcept C15744967 @default.
- W4322004807 hasConcept C165205528 @default.
- W4322004807 hasConcept C186295008 @default.
- W4322004807 hasConcept C22286887 @default.
- W4322004807 hasConcept C41008148 @default.
- W4322004807 hasConcept C542102704 @default.
- W4322004807 hasConcept C62649853 @default.
- W4322004807 hasConcept C87360688 @default.
- W4322004807 hasConceptScore W4322004807C107551265 @default.
- W4322004807 hasConceptScore W4322004807C11413529 @default.
- W4322004807 hasConceptScore W4322004807C127313418 @default.
- W4322004807 hasConceptScore W4322004807C13280743 @default.
- W4322004807 hasConceptScore W4322004807C154945302 @default.
- W4322004807 hasConceptScore W4322004807C15744967 @default.
- W4322004807 hasConceptScore W4322004807C165205528 @default.
- W4322004807 hasConceptScore W4322004807C186295008 @default.
- W4322004807 hasConceptScore W4322004807C22286887 @default.
- W4322004807 hasConceptScore W4322004807C41008148 @default.
- W4322004807 hasConceptScore W4322004807C542102704 @default.
- W4322004807 hasConceptScore W4322004807C62649853 @default.
- W4322004807 hasConceptScore W4322004807C87360688 @default.
- W4322004807 hasLocation W43220048071 @default.
- W4322004807 hasOpenAccess W4322004807 @default.
- W4322004807 hasPrimaryLocation W43220048071 @default.
- W4322004807 hasRelatedWork W2106163385 @default.
- W4322004807 hasRelatedWork W2133758635 @default.
- W4322004807 hasRelatedWork W2170102735 @default.
- W4322004807 hasRelatedWork W2333230539 @default.
- W4322004807 hasRelatedWork W2808516698 @default.
- W4322004807 hasRelatedWork W3021954438 @default.
- W4322004807 hasRelatedWork W3092690999 @default.
- W4322004807 hasRelatedWork W3103586207 @default.
- W4322004807 hasRelatedWork W3188121472 @default.
- W4322004807 hasRelatedWork W4282834622 @default.
- W4322004807 isParatext "false" @default.
- W4322004807 isRetracted "false" @default.
- W4322004807 workType "article" @default.