Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322004833> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4322004833 abstract "Seismic hazards analysis relies on accurate knowledge of ground motions arising from potential earthquakes to assess the risk of damage to buildings and infrastructure. It is necessary to perform ground motion simulations because recorded strong-motion data from specific combinations of earthquake magnitudes, epicentral distances, and site conditions are still limited. Physics-based simulations provide reliable ground motion estimates, but their application in practice is limited to frequency ranges f < 1Hz, largely due to limited computational resources and lack of information regarding earthquake sources and medium. While hybrid ground-motion computations combining deterministic low frequency components with stochastic high frequency components are often used,  their stochastic high frequency components fail to correctly account for source and path effects and lead to inconsistent building responses.The large database of ground motion records from Japan lends itself to develop machine learning approaches to estimate high frequency ground motions. Applying state-of-the-art machine learning techniques, like Fourier neural operators (FNOs) and Generative Adversarial Networks (GANs), we estimate seismograms at higher frequencies from their low frequency counterparts. In our approach, the time and frequency properties of ground motions are estimated using two different FNO models. In the time domain, a relationship is established between normalised low pass filtered and broadband waveforms. Frequency domain analysis involves the learning of high frequency spectrum from low frequency spectrum. Finally, the time and frequency properties are combined to produce broadband ground motions. Source, site, and path aspects are naturally incorporated into the training process.We use ground motion data collected between 1996 and 2020 at 18 stations in the Ibaraki province of Japan to train our models and validate them on different events (Mw 4 to 7) around Japan. Using goodness of fit measures (GOFs), we show that the resulting ground motions match the recorded observations with good to acceptable GOF values for most of the predictions. To enhance our predictions, we include uncertainty estimation by utilizing a conditioned GAN approach. Lastly, to demonstrate the practicality of the approach, we compute high frequency components for a physics based simulated hypothetical Mw 5.0 earthquake in Japan." @default.
- W4322004833 created "2023-02-26" @default.
- W4322004833 creator A5002771136 @default.
- W4322004833 creator A5030488212 @default.
- W4322004833 date "2023-05-15" @default.
- W4322004833 modified "2023-09-29" @default.
- W4322004833 title "Simulation of ground motions with high frequency components obtained from Fourier neural operators" @default.
- W4322004833 doi "https://doi.org/10.5194/egusphere-egu23-9036" @default.
- W4322004833 hasPublicationYear "2023" @default.
- W4322004833 type Work @default.
- W4322004833 citedByCount "0" @default.
- W4322004833 crossrefType "posted-content" @default.
- W4322004833 hasAuthorship W4322004833A5002771136 @default.
- W4322004833 hasAuthorship W4322004833A5030488212 @default.
- W4322004833 hasConcept C102519508 @default.
- W4322004833 hasConcept C104114177 @default.
- W4322004833 hasConcept C11413529 @default.
- W4322004833 hasConcept C121332964 @default.
- W4322004833 hasConcept C127313418 @default.
- W4322004833 hasConcept C134306372 @default.
- W4322004833 hasConcept C154945302 @default.
- W4322004833 hasConcept C165205528 @default.
- W4322004833 hasConcept C169744125 @default.
- W4322004833 hasConcept C19118579 @default.
- W4322004833 hasConcept C24890656 @default.
- W4322004833 hasConcept C2988284105 @default.
- W4322004833 hasConcept C31972630 @default.
- W4322004833 hasConcept C33923547 @default.
- W4322004833 hasConcept C41008148 @default.
- W4322004833 hasConcept C89929633 @default.
- W4322004833 hasConceptScore W4322004833C102519508 @default.
- W4322004833 hasConceptScore W4322004833C104114177 @default.
- W4322004833 hasConceptScore W4322004833C11413529 @default.
- W4322004833 hasConceptScore W4322004833C121332964 @default.
- W4322004833 hasConceptScore W4322004833C127313418 @default.
- W4322004833 hasConceptScore W4322004833C134306372 @default.
- W4322004833 hasConceptScore W4322004833C154945302 @default.
- W4322004833 hasConceptScore W4322004833C165205528 @default.
- W4322004833 hasConceptScore W4322004833C169744125 @default.
- W4322004833 hasConceptScore W4322004833C19118579 @default.
- W4322004833 hasConceptScore W4322004833C24890656 @default.
- W4322004833 hasConceptScore W4322004833C2988284105 @default.
- W4322004833 hasConceptScore W4322004833C31972630 @default.
- W4322004833 hasConceptScore W4322004833C33923547 @default.
- W4322004833 hasConceptScore W4322004833C41008148 @default.
- W4322004833 hasConceptScore W4322004833C89929633 @default.
- W4322004833 hasLocation W43220048331 @default.
- W4322004833 hasOpenAccess W4322004833 @default.
- W4322004833 hasPrimaryLocation W43220048331 @default.
- W4322004833 hasRelatedWork W1641824772 @default.
- W4322004833 hasRelatedWork W1966691150 @default.
- W4322004833 hasRelatedWork W1967712729 @default.
- W4322004833 hasRelatedWork W2002556611 @default.
- W4322004833 hasRelatedWork W2133340179 @default.
- W4322004833 hasRelatedWork W2139413599 @default.
- W4322004833 hasRelatedWork W2605638143 @default.
- W4322004833 hasRelatedWork W4214578265 @default.
- W4322004833 hasRelatedWork W4321996067 @default.
- W4322004833 hasRelatedWork W640094496 @default.
- W4322004833 isParatext "false" @default.
- W4322004833 isRetracted "false" @default.
- W4322004833 workType "article" @default.