Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322004835> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4322004835 abstract "Recent years have seen an increase of deep learning applications for flow forecasting. Large-sample hydrological (LSH) studies typically try to predict the runoff of a catchment using some selection of hydrometeorological features from the respective catchment. One aspect of these models that has received little attention in LSH is the effect that data from upstream catchments has on model performance. The number of available and stations and distance between stations is highly variable between catchments, which creates a unique modelling challenge. Existing LSH studies either use some form of linear aggregation of upstream flows as input features or omit them altogether. The potential of upstream data to improve the performance of real-time flow forecasts has not yet been systematically evaluated on a large scale. The objective of our study is to evaluate methods for integrating upstream features for real-time, data-driven flow forecasting models. Our study uses a subset of Canadian catchments (n>150) from the HYSETS database. For each catchment, long-short term memory networks (LSTMs) are used to generate flow forecasts for lead times of 1 to 3 days. We evaluate methods for identifying, selecting, and integrating relevant upstream input features within a deep-learning modelling framework, which include using neighbouring upstream stations, using all upstream stations, and using all stations with embedded dimensionality reduction. Early results indicate that while the inclusion of upstream data often yields improvements in model performance, including too much upstream information can easily have detrimental effects." @default.
- W4322004835 created "2023-02-26" @default.
- W4322004835 creator A5025641667 @default.
- W4322004835 creator A5053111667 @default.
- W4322004835 date "2023-05-15" @default.
- W4322004835 modified "2023-10-18" @default.
- W4322004835 title "A large sample study of the effects of upstream hydrometeorological input features for LSTM-based daily flow forecasting in Canadian catchments" @default.
- W4322004835 doi "https://doi.org/10.5194/egusphere-egu23-8746" @default.
- W4322004835 hasPublicationYear "2023" @default.
- W4322004835 type Work @default.
- W4322004835 citedByCount "0" @default.
- W4322004835 crossrefType "posted-content" @default.
- W4322004835 hasAuthorship W4322004835A5025641667 @default.
- W4322004835 hasAuthorship W4322004835A5053111667 @default.
- W4322004835 hasConcept C100725284 @default.
- W4322004835 hasConcept C107054158 @default.
- W4322004835 hasConcept C127413603 @default.
- W4322004835 hasConcept C153294291 @default.
- W4322004835 hasConcept C158980903 @default.
- W4322004835 hasConcept C185592680 @default.
- W4322004835 hasConcept C187320778 @default.
- W4322004835 hasConcept C18903297 @default.
- W4322004835 hasConcept C191172861 @default.
- W4322004835 hasConcept C198531522 @default.
- W4322004835 hasConcept C205649164 @default.
- W4322004835 hasConcept C31258907 @default.
- W4322004835 hasConcept C39432304 @default.
- W4322004835 hasConcept C41008148 @default.
- W4322004835 hasConcept C43617362 @default.
- W4322004835 hasConcept C50477045 @default.
- W4322004835 hasConcept C76886044 @default.
- W4322004835 hasConcept C86803240 @default.
- W4322004835 hasConceptScore W4322004835C100725284 @default.
- W4322004835 hasConceptScore W4322004835C107054158 @default.
- W4322004835 hasConceptScore W4322004835C127413603 @default.
- W4322004835 hasConceptScore W4322004835C153294291 @default.
- W4322004835 hasConceptScore W4322004835C158980903 @default.
- W4322004835 hasConceptScore W4322004835C185592680 @default.
- W4322004835 hasConceptScore W4322004835C187320778 @default.
- W4322004835 hasConceptScore W4322004835C18903297 @default.
- W4322004835 hasConceptScore W4322004835C191172861 @default.
- W4322004835 hasConceptScore W4322004835C198531522 @default.
- W4322004835 hasConceptScore W4322004835C205649164 @default.
- W4322004835 hasConceptScore W4322004835C31258907 @default.
- W4322004835 hasConceptScore W4322004835C39432304 @default.
- W4322004835 hasConceptScore W4322004835C41008148 @default.
- W4322004835 hasConceptScore W4322004835C43617362 @default.
- W4322004835 hasConceptScore W4322004835C50477045 @default.
- W4322004835 hasConceptScore W4322004835C76886044 @default.
- W4322004835 hasConceptScore W4322004835C86803240 @default.
- W4322004835 hasLocation W43220048351 @default.
- W4322004835 hasOpenAccess W4322004835 @default.
- W4322004835 hasPrimaryLocation W43220048351 @default.
- W4322004835 hasRelatedWork W1495304835 @default.
- W4322004835 hasRelatedWork W2005612272 @default.
- W4322004835 hasRelatedWork W2187959959 @default.
- W4322004835 hasRelatedWork W2323070724 @default.
- W4322004835 hasRelatedWork W2327934318 @default.
- W4322004835 hasRelatedWork W2373233278 @default.
- W4322004835 hasRelatedWork W2388092362 @default.
- W4322004835 hasRelatedWork W2392512544 @default.
- W4322004835 hasRelatedWork W4255467712 @default.
- W4322004835 hasRelatedWork W2139679407 @default.
- W4322004835 isParatext "false" @default.
- W4322004835 isRetracted "false" @default.
- W4322004835 workType "article" @default.