Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322005040> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4322005040 abstract "Impaired water quality continues to be a serious problem in surface waters worldwide. Despite extensive regulatory water quality monitoring implemented by the Government of India over the past two decades, the spatial and temporal resolution of water quality observations, the range of monitored contaminants and data related to characterisation of point source effluents are still limited. In addition, discharge data for trans-boundary rivers is considered sensitive information and is not publicly available. Hence, quantifying, and mitigating pollutant loads and planning effective mitigation strategies are hindered by data paucity and there is an urgent need for the development of decision support tools (DST) that can account for these uncertainties.In this study, we tested the application of a probabilistic DST based on Bayesian Belief Networks, to evaluate pollution risk from nutrients (phosphate, nitrate, ammonia), sediments and heavy metals (Cd, Cr, Cu, Pb, Zn) in the Ramganga river basin (30,839 km2), the first major tributary of the Ganga in the state of Uttar Pradesh, India, and is understood to be a significant source of pollution into the Ganga River, contributed from a range of industries, domestic sources and intensive farming practices. Bayesian belief networks are graphical causal models that enable to integrate observational data (both spatial and temporal) with data from literature and expert knowledge within a probabilistic framework, whilst accounting for uncertainty.The objectives of this study were to 1) develop a parsimonious conceptual model of the system that allows harnessing diverse but limited data, 2) evaluate the important components of the system to inform further data collection and management strategies, and 3) simulate plausible management scenarios. We simulated the impacts of point source management interventions on pollution risk, including provision of sufficient municipal sewage treatment plant (STP) capacity, enhanced STP treatment levels and sufficient industrial wastewater effluent treatment capacity. We found a clear effect of enhanced STP interventions on improved regulatory standard compliance for nitrate (from 92% to 95%) and phosphate (from 33% to 41%). However, the effect of interventions on heavy metal pollution risk was not clear, due to considerable uncertainties related to the lack of reliable discharge data and the characterisation of industrial effluent quality. The parsimonious DST helped to collate the available understanding related to water quality impacts from multiple pollutants in the Ramganga river basin, while sensitivity analysis highlighted critical areas for further data collection." @default.
- W4322005040 created "2023-02-26" @default.
- W4322005040 creator A5014458810 @default.
- W4322005040 creator A5015081295 @default.
- W4322005040 creator A5025069501 @default.
- W4322005040 creator A5079955501 @default.
- W4322005040 creator A5086015347 @default.
- W4322005040 date "2023-05-15" @default.
- W4322005040 modified "2023-10-04" @default.
- W4322005040 title "Probabilistic modelling of water quality in the Ramganga River, India, informed by sparce observational data" @default.
- W4322005040 doi "https://doi.org/10.5194/egusphere-egu23-7990" @default.
- W4322005040 hasPublicationYear "2023" @default.
- W4322005040 type Work @default.
- W4322005040 citedByCount "0" @default.
- W4322005040 crossrefType "posted-content" @default.
- W4322005040 hasAuthorship W4322005040A5014458810 @default.
- W4322005040 hasAuthorship W4322005040A5015081295 @default.
- W4322005040 hasAuthorship W4322005040A5025069501 @default.
- W4322005040 hasAuthorship W4322005040A5079955501 @default.
- W4322005040 hasAuthorship W4322005040A5086015347 @default.
- W4322005040 hasConcept C107826830 @default.
- W4322005040 hasConcept C144133560 @default.
- W4322005040 hasConcept C154945302 @default.
- W4322005040 hasConcept C162853370 @default.
- W4322005040 hasConcept C16828302 @default.
- W4322005040 hasConcept C176217482 @default.
- W4322005040 hasConcept C179006392 @default.
- W4322005040 hasConcept C18903297 @default.
- W4322005040 hasConcept C205649164 @default.
- W4322005040 hasConcept C24756922 @default.
- W4322005040 hasConcept C2780797713 @default.
- W4322005040 hasConcept C33724603 @default.
- W4322005040 hasConcept C39432304 @default.
- W4322005040 hasConcept C41008148 @default.
- W4322005040 hasConcept C49937458 @default.
- W4322005040 hasConcept C524765639 @default.
- W4322005040 hasConcept C58640448 @default.
- W4322005040 hasConcept C86803240 @default.
- W4322005040 hasConcept C91375879 @default.
- W4322005040 hasConceptScore W4322005040C107826830 @default.
- W4322005040 hasConceptScore W4322005040C144133560 @default.
- W4322005040 hasConceptScore W4322005040C154945302 @default.
- W4322005040 hasConceptScore W4322005040C162853370 @default.
- W4322005040 hasConceptScore W4322005040C16828302 @default.
- W4322005040 hasConceptScore W4322005040C176217482 @default.
- W4322005040 hasConceptScore W4322005040C179006392 @default.
- W4322005040 hasConceptScore W4322005040C18903297 @default.
- W4322005040 hasConceptScore W4322005040C205649164 @default.
- W4322005040 hasConceptScore W4322005040C24756922 @default.
- W4322005040 hasConceptScore W4322005040C2780797713 @default.
- W4322005040 hasConceptScore W4322005040C33724603 @default.
- W4322005040 hasConceptScore W4322005040C39432304 @default.
- W4322005040 hasConceptScore W4322005040C41008148 @default.
- W4322005040 hasConceptScore W4322005040C49937458 @default.
- W4322005040 hasConceptScore W4322005040C524765639 @default.
- W4322005040 hasConceptScore W4322005040C58640448 @default.
- W4322005040 hasConceptScore W4322005040C86803240 @default.
- W4322005040 hasConceptScore W4322005040C91375879 @default.
- W4322005040 hasLocation W43220050401 @default.
- W4322005040 hasOpenAccess W4322005040 @default.
- W4322005040 hasPrimaryLocation W43220050401 @default.
- W4322005040 hasRelatedWork W1970825037 @default.
- W4322005040 hasRelatedWork W2107963120 @default.
- W4322005040 hasRelatedWork W2137169629 @default.
- W4322005040 hasRelatedWork W2257224980 @default.
- W4322005040 hasRelatedWork W2360606605 @default.
- W4322005040 hasRelatedWork W2365707940 @default.
- W4322005040 hasRelatedWork W2802253173 @default.
- W4322005040 hasRelatedWork W3042797753 @default.
- W4322005040 hasRelatedWork W319978571 @default.
- W4322005040 hasRelatedWork W4295106052 @default.
- W4322005040 isParatext "false" @default.
- W4322005040 isRetracted "false" @default.
- W4322005040 workType "article" @default.