Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322005062> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4322005062 abstract "Lithological interpretation of remote sensing and geophysical data plays a vital role in mineral resource mapping, especially in areas of the limited outcrop. This study applied a Random Forest (RF) classifier to obtain the refined lithological map of the Mundiyawas-Khera mineralized belt of the Alwar basin, India, from remote sensing and potential field data. A total of 540 samples covering the major lithologies were fed to RF for training (80%) and testing (20%), and its performance was evaluated using precision, recall, and accuracy. The degree of uncertainty associated with RF was also computed using the information entropy technique to pinpoint the regions where the refined lithology map is incorrectly classified. The results indicate that RF yields an overall accuracy of 73.15% in classifying all the major lithological units in the region, such as felsic volcanic, carbon phyllite, mica schist, quartzite, and tremolite-bearing dolomite. Among all the five lithologies, RF showed the best precision (84.62%) and recall (90.91%.) for quartzite and M-mica schist respectively and comparable precision/recall values for the felsic volcanic rocks that host Cu mineralization. Whereas other lithologies, dolomite and carbon phyllite, were not accurately predicted by RF, which might be due to the limited number of samples. The results of the class membership probabilities indicate that not all the litho-units predicted by the model are absolute. The study illustrates that RF can be used as a viable alternative in regions with limited outcrops and geochemical information to prepare the new lithology map or refine the existing geological maps. Keywords: Machine Learning, Lithology Classification, Gravity and Magnetic Data" @default.
- W4322005062 created "2023-02-26" @default.
- W4322005062 creator A5050492834 @default.
- W4322005062 creator A5089658625 @default.
- W4322005062 date "2023-05-15" @default.
- W4322005062 modified "2023-09-29" @default.
- W4322005062 title "Random Forest classifier for lithological mapping of the Mundiyawas-Khera mineralized belt of the Alwar basin, India, from remote sensing and potential field data" @default.
- W4322005062 doi "https://doi.org/10.5194/egusphere-egu23-8232" @default.
- W4322005062 hasPublicationYear "2023" @default.
- W4322005062 type Work @default.
- W4322005062 citedByCount "0" @default.
- W4322005062 crossrefType "posted-content" @default.
- W4322005062 hasAuthorship W4322005062A5050492834 @default.
- W4322005062 hasAuthorship W4322005062A5089658625 @default.
- W4322005062 hasConcept C101139013 @default.
- W4322005062 hasConcept C120806208 @default.
- W4322005062 hasConcept C122792734 @default.
- W4322005062 hasConcept C127313418 @default.
- W4322005062 hasConcept C16674752 @default.
- W4322005062 hasConcept C169212394 @default.
- W4322005062 hasConcept C17409809 @default.
- W4322005062 hasConcept C191897082 @default.
- W4322005062 hasConcept C192241223 @default.
- W4322005062 hasConcept C192562407 @default.
- W4322005062 hasConcept C193429443 @default.
- W4322005062 hasConcept C199289684 @default.
- W4322005062 hasConcept C26687426 @default.
- W4322005062 hasConcept C26815474 @default.
- W4322005062 hasConcept C2778302498 @default.
- W4322005062 hasConcept C2780181037 @default.
- W4322005062 hasConcept C510490043 @default.
- W4322005062 hasConcept C62649853 @default.
- W4322005062 hasConceptScore W4322005062C101139013 @default.
- W4322005062 hasConceptScore W4322005062C120806208 @default.
- W4322005062 hasConceptScore W4322005062C122792734 @default.
- W4322005062 hasConceptScore W4322005062C127313418 @default.
- W4322005062 hasConceptScore W4322005062C16674752 @default.
- W4322005062 hasConceptScore W4322005062C169212394 @default.
- W4322005062 hasConceptScore W4322005062C17409809 @default.
- W4322005062 hasConceptScore W4322005062C191897082 @default.
- W4322005062 hasConceptScore W4322005062C192241223 @default.
- W4322005062 hasConceptScore W4322005062C192562407 @default.
- W4322005062 hasConceptScore W4322005062C193429443 @default.
- W4322005062 hasConceptScore W4322005062C199289684 @default.
- W4322005062 hasConceptScore W4322005062C26687426 @default.
- W4322005062 hasConceptScore W4322005062C26815474 @default.
- W4322005062 hasConceptScore W4322005062C2778302498 @default.
- W4322005062 hasConceptScore W4322005062C2780181037 @default.
- W4322005062 hasConceptScore W4322005062C510490043 @default.
- W4322005062 hasConceptScore W4322005062C62649853 @default.
- W4322005062 hasLocation W43220050621 @default.
- W4322005062 hasOpenAccess W4322005062 @default.
- W4322005062 hasPrimaryLocation W43220050621 @default.
- W4322005062 hasRelatedWork W2248109649 @default.
- W4322005062 hasRelatedWork W2349947565 @default.
- W4322005062 hasRelatedWork W2359750499 @default.
- W4322005062 hasRelatedWork W2373304614 @default.
- W4322005062 hasRelatedWork W2381283642 @default.
- W4322005062 hasRelatedWork W2388576027 @default.
- W4322005062 hasRelatedWork W251013083 @default.
- W4322005062 hasRelatedWork W4285252905 @default.
- W4322005062 hasRelatedWork W4322005062 @default.
- W4322005062 hasRelatedWork W2621240012 @default.
- W4322005062 isParatext "false" @default.
- W4322005062 isRetracted "false" @default.
- W4322005062 workType "article" @default.