Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322005541> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4322005541 abstract "Eddies are circular rotating water masses, which are usually generated near the large ocean currents, e.g., Gulf Stream. Monitoring eddies and gaining knowledge on eddy statistics over a large region are important for fishery, marine biology studies, and testing ocean models.At mesoscale, eddies are observed in radar altimetry, and methods have been developed to identify, track and classify them in gridded maps of sea surface height derived from multi-mission data sets. However, this procedure has drawbacks since much information is lost in the gridded maps. Inevitably, the spatial and temporal resolution of the original altimetry data degrades during the gridding process. On the other hand, the task of identifying eddies has been a post-analysis process on the gridded dataset, which is, by far, not meaningful for near-real time applications or forecasts. In the EDDY project at the University of Bonn, we aim to develop methods for identifying eddies directly from along track altimetry data via a machine (deep) learning approach.Since eddy signatures (eddy boundary and highs and lows on sea level anomaly, SLA) are not possible to extract directly from along track altimetry data, the gridded altimetry maps from AVISO are used to detect eddies. These will serve as the reference data for Machine Learning. The eddy detection on 2D grid maps is produced by open-source geometry-based approach (e.g., py-eddy-tracker, Mason et al., 2014) with additional constraints like Okubo-Weiss parameter. Later, Sea Surface Temperature (SST) maps of the same region and date (also available from AVISO) are used for manually cleaning the reference data. Noting that altimetry grid maps and SST maps have different temporal and spatial resolution, we also use the high resolution (~6 km) ocean modeling simulation dataset (e.g., FESOM, Finite Element Sea ice Ocean Model). In this case, the FESOM dataset provides a coherent, high-resolution SLA and SST, salinity maps for the study area and is a potential test basis to develop the deep learning network.The single modal training via a Conventional Neural Network (CNN) for the 2D altimetry grid maps produced excellent dice score of 86%, meaning the network almost detects all eddies in the Gulf Stream, which are consistent with reference data. For the multi-modal training, two different training networks are developed for 1D along-track altimetry data and 2D grid maps from SLA and SST, respectively, and then they are combined to give the final classification output. A transformer model is deemed to be efficient for encoding the spatiotemporal information from 1D along track altimetry data, while CNN is sufficient for 2D grid maps from multi-sensors.In this presentation, we show the eddy classification results from the multi-modal deep learning approach based on along track and gridded multi-source datasets for the Gulf stream area for the period between 2017 and 2019. Results show that multi-modal deep learning improve the classification by more than 20% compared to transformer model training on along-track data alone." @default.
- W4322005541 created "2023-02-26" @default.
- W4322005541 creator A5015078560 @default.
- W4322005541 creator A5026009966 @default.
- W4322005541 creator A5043510754 @default.
- W4322005541 creator A5060111105 @default.
- W4322005541 creator A5062698877 @default.
- W4322005541 date "2023-05-15" @default.
- W4322005541 modified "2023-09-29" @default.
- W4322005541 title "Eddy identification from along-track altimeter data with multi-modal deep learning" @default.
- W4322005541 doi "https://doi.org/10.5194/egusphere-egu23-6818" @default.
- W4322005541 hasPublicationYear "2023" @default.
- W4322005541 type Work @default.
- W4322005541 citedByCount "0" @default.
- W4322005541 crossrefType "posted-content" @default.
- W4322005541 hasAuthorship W4322005541A5015078560 @default.
- W4322005541 hasAuthorship W4322005541A5026009966 @default.
- W4322005541 hasAuthorship W4322005541A5043510754 @default.
- W4322005541 hasAuthorship W4322005541A5060111105 @default.
- W4322005541 hasAuthorship W4322005541A5062698877 @default.
- W4322005541 hasConcept C127313418 @default.
- W4322005541 hasConcept C13280743 @default.
- W4322005541 hasConcept C142672198 @default.
- W4322005541 hasConcept C153294291 @default.
- W4322005541 hasConcept C17534553 @default.
- W4322005541 hasConcept C179065325 @default.
- W4322005541 hasConcept C196558001 @default.
- W4322005541 hasConcept C205649164 @default.
- W4322005541 hasConcept C40382383 @default.
- W4322005541 hasConcept C41008148 @default.
- W4322005541 hasConcept C49204034 @default.
- W4322005541 hasConcept C554190296 @default.
- W4322005541 hasConcept C62649853 @default.
- W4322005541 hasConcept C76155785 @default.
- W4322005541 hasConcept C8058405 @default.
- W4322005541 hasConceptScore W4322005541C127313418 @default.
- W4322005541 hasConceptScore W4322005541C13280743 @default.
- W4322005541 hasConceptScore W4322005541C142672198 @default.
- W4322005541 hasConceptScore W4322005541C153294291 @default.
- W4322005541 hasConceptScore W4322005541C17534553 @default.
- W4322005541 hasConceptScore W4322005541C179065325 @default.
- W4322005541 hasConceptScore W4322005541C196558001 @default.
- W4322005541 hasConceptScore W4322005541C205649164 @default.
- W4322005541 hasConceptScore W4322005541C40382383 @default.
- W4322005541 hasConceptScore W4322005541C41008148 @default.
- W4322005541 hasConceptScore W4322005541C49204034 @default.
- W4322005541 hasConceptScore W4322005541C554190296 @default.
- W4322005541 hasConceptScore W4322005541C62649853 @default.
- W4322005541 hasConceptScore W4322005541C76155785 @default.
- W4322005541 hasConceptScore W4322005541C8058405 @default.
- W4322005541 hasLocation W43220055411 @default.
- W4322005541 hasOpenAccess W4322005541 @default.
- W4322005541 hasPrimaryLocation W43220055411 @default.
- W4322005541 hasRelatedWork W1857233491 @default.
- W4322005541 hasRelatedWork W1997246249 @default.
- W4322005541 hasRelatedWork W2044594197 @default.
- W4322005541 hasRelatedWork W2090178369 @default.
- W4322005541 hasRelatedWork W3110661901 @default.
- W4322005541 hasRelatedWork W3148054453 @default.
- W4322005541 hasRelatedWork W4231805097 @default.
- W4322005541 hasRelatedWork W4319160314 @default.
- W4322005541 hasRelatedWork W4321495091 @default.
- W4322005541 hasRelatedWork W2273504821 @default.
- W4322005541 isParatext "false" @default.
- W4322005541 isRetracted "false" @default.
- W4322005541 workType "article" @default.