Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322005719> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4322005719 abstract "Seasonal snow is an essential source of water, especially in mountainous regions. However, accurate satellite observations of the snow water equivalent (SWE), i.e., snow depth multiplied by the snow density, are still lacking. Therefore, new and robust remote sensing techniques are urgently needed. This study presents a novel method for SWE retrieval in mountainous regions at sub-weekly temporal and 500-m spatial resolution, based on snow depth observations from the ESA and Copernicus Sentinel-1 (S1) satellite mission and model simulations of snow density. The snow depth observations rely on a change detection algorithm which translates the temporal changes in the S1 radar backscatter measurements into the accumulation or ablation of snow. The snow density estimates are obtained from different modeling approaches, including empirical methods (e.g., based on the day of the year, the snow depth, snow climate class, etc.) and a physics-based mass and energy balance model. The performance of the different snow density modeling approaches is here compared, both with respect to their ability to accurately simulate in situ measurements of snow density, as well as their ability to accurately simulate in situ measurements of SWE after combination with the S1 snow depth observations. The performance is evaluated over the European Alps, using a large dataset of in situ time series measurements for the period 2015-2022. The results show that the physics-based snow density modeling approach outperforms the empirical approaches, yielding high spatio-temporal correlation between S1 SWE retrievals and in situ measurements. Therefore, the study demonstrates the capability of the Sentinel-1 satellite mission, in combination with a physics-based snow model, to accurately represent the spatio-temporal distribution of SWE in mountainous regions, which can benefit a large range of applications, including hydropower generation, water management, flood forecasting, and numerical weather prediction." @default.
- W4322005719 created "2023-02-26" @default.
- W4322005719 creator A5056787306 @default.
- W4322005719 creator A5061871018 @default.
- W4322005719 creator A5084455248 @default.
- W4322005719 creator A5085189258 @default.
- W4322005719 creator A5090547781 @default.
- W4322005719 date "2023-05-15" @default.
- W4322005719 modified "2023-09-29" @default.
- W4322005719 title "SWE retrieval in the European Alps based on Sentinel-1 snow depth observations and modeled snow density" @default.
- W4322005719 doi "https://doi.org/10.5194/egusphere-egu23-7050" @default.
- W4322005719 hasPublicationYear "2023" @default.
- W4322005719 type Work @default.
- W4322005719 citedByCount "0" @default.
- W4322005719 crossrefType "posted-content" @default.
- W4322005719 hasAuthorship W4322005719A5056787306 @default.
- W4322005719 hasAuthorship W4322005719A5061871018 @default.
- W4322005719 hasAuthorship W4322005719A5084455248 @default.
- W4322005719 hasAuthorship W4322005719A5085189258 @default.
- W4322005719 hasAuthorship W4322005719A5090547781 @default.
- W4322005719 hasConcept C121332964 @default.
- W4322005719 hasConcept C127313418 @default.
- W4322005719 hasConcept C1276947 @default.
- W4322005719 hasConcept C153294291 @default.
- W4322005719 hasConcept C19269812 @default.
- W4322005719 hasConcept C197046000 @default.
- W4322005719 hasConcept C205649164 @default.
- W4322005719 hasConcept C2778877292 @default.
- W4322005719 hasConcept C3018601724 @default.
- W4322005719 hasConcept C39432304 @default.
- W4322005719 hasConcept C41008148 @default.
- W4322005719 hasConcept C49204034 @default.
- W4322005719 hasConcept C554190296 @default.
- W4322005719 hasConcept C62649853 @default.
- W4322005719 hasConcept C76155785 @default.
- W4322005719 hasConcept C91586092 @default.
- W4322005719 hasConceptScore W4322005719C121332964 @default.
- W4322005719 hasConceptScore W4322005719C127313418 @default.
- W4322005719 hasConceptScore W4322005719C1276947 @default.
- W4322005719 hasConceptScore W4322005719C153294291 @default.
- W4322005719 hasConceptScore W4322005719C19269812 @default.
- W4322005719 hasConceptScore W4322005719C197046000 @default.
- W4322005719 hasConceptScore W4322005719C205649164 @default.
- W4322005719 hasConceptScore W4322005719C2778877292 @default.
- W4322005719 hasConceptScore W4322005719C3018601724 @default.
- W4322005719 hasConceptScore W4322005719C39432304 @default.
- W4322005719 hasConceptScore W4322005719C41008148 @default.
- W4322005719 hasConceptScore W4322005719C49204034 @default.
- W4322005719 hasConceptScore W4322005719C554190296 @default.
- W4322005719 hasConceptScore W4322005719C62649853 @default.
- W4322005719 hasConceptScore W4322005719C76155785 @default.
- W4322005719 hasConceptScore W4322005719C91586092 @default.
- W4322005719 hasLocation W43220057191 @default.
- W4322005719 hasOpenAccess W4322005719 @default.
- W4322005719 hasPrimaryLocation W43220057191 @default.
- W4322005719 hasRelatedWork W1991002759 @default.
- W4322005719 hasRelatedWork W2039743872 @default.
- W4322005719 hasRelatedWork W2053009102 @default.
- W4322005719 hasRelatedWork W2087837963 @default.
- W4322005719 hasRelatedWork W2146809780 @default.
- W4322005719 hasRelatedWork W2592642139 @default.
- W4322005719 hasRelatedWork W3155989523 @default.
- W4322005719 hasRelatedWork W4221037407 @default.
- W4322005719 hasRelatedWork W585939947 @default.
- W4322005719 hasRelatedWork W774464552 @default.
- W4322005719 isParatext "false" @default.
- W4322005719 isRetracted "false" @default.
- W4322005719 workType "article" @default.