Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322005823> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4322005823 abstract "Probabilistic forecasts based on ensemble simulations of numerical weather prediction models have become a standard tool in weather forecasting and various application areas. However, ensemble forecasting systems tend to exhibit systematic errors such as biases, and fail to correctly quantify forecast uncertainty. Therefore, a variety of post-processing methods has been developed to correct these errors and improve predictions [1]. In particular, machine learning methods based on neural networks have been demonstrated to lead to substantial improvements compared to classical statistical techniques [2].While post-processing can successfully correct the biases and dispersion errors in the weather variables, its effect but has not been evaluated thoroughly in the context of subsequent forecasts, such as wind and solar power generation forecasts and it is not obvious how to best propagate forecast uncertainty through to subsequent power forecasting models. Therefore, the work presented here will evaluate multiple strategies for applying ensemble post-processing to probabilistic wind and solar power forecasts. We use Ensemble Model Output Statistics (EMOS) as the post-processing method and evaluate four possible strategies: only using the raw ensembles without post-processing, a one-step strategy where only the weather ensembles are post-processed, a one-step strategy where we only post-process the power ensembles and a two-step strategy where we post-process both the weather and power ensembles. The presentation is based on recent work in Phipps et al. (2022) [3] and ongoing other work.References[1] Vannitsem, S., et al. (2021). Statistical Postprocessing for Weather Forecasts - Review, Challenges and Avenues in a Big Data World. Bulletin of the American Meteorological Society, 102, E681–E699.[2] Rasp, S. and Lerch, S. (2018). Neural networks for post-processing ensemble weather forecasts. Monthly Weather Review, 146, 3885–3900.[3] Phipps, K., Lerch, S., Andersson, M., Mikut, R., Hagenmeyer, V. and Ludwig, N. (2022). Evaluating ensemble post-processing for wind power forecasts. Wind Energy, 25, 1379-1405. " @default.
- W4322005823 created "2023-02-26" @default.
- W4322005823 creator A5060759568 @default.
- W4322005823 date "2023-05-15" @default.
- W4322005823 modified "2023-09-29" @default.
- W4322005823 title "Evaluating ensemble post-processing for probabilistic energy prediction" @default.
- W4322005823 doi "https://doi.org/10.5194/egusphere-egu23-6644" @default.
- W4322005823 hasPublicationYear "2023" @default.
- W4322005823 type Work @default.
- W4322005823 citedByCount "0" @default.
- W4322005823 crossrefType "posted-content" @default.
- W4322005823 hasAuthorship W4322005823A5060759568 @default.
- W4322005823 hasConcept C111919701 @default.
- W4322005823 hasConcept C119857082 @default.
- W4322005823 hasConcept C119898033 @default.
- W4322005823 hasConcept C121332964 @default.
- W4322005823 hasConcept C122282355 @default.
- W4322005823 hasConcept C124101348 @default.
- W4322005823 hasConcept C147947694 @default.
- W4322005823 hasConcept C151730666 @default.
- W4322005823 hasConcept C153294291 @default.
- W4322005823 hasConcept C154945302 @default.
- W4322005823 hasConcept C163258240 @default.
- W4322005823 hasConcept C21001229 @default.
- W4322005823 hasConcept C2779343474 @default.
- W4322005823 hasConcept C2781084341 @default.
- W4322005823 hasConcept C41008148 @default.
- W4322005823 hasConcept C45942800 @default.
- W4322005823 hasConcept C49937458 @default.
- W4322005823 hasConcept C50644808 @default.
- W4322005823 hasConcept C62520636 @default.
- W4322005823 hasConcept C86803240 @default.
- W4322005823 hasConcept C89227174 @default.
- W4322005823 hasConcept C98045186 @default.
- W4322005823 hasConceptScore W4322005823C111919701 @default.
- W4322005823 hasConceptScore W4322005823C119857082 @default.
- W4322005823 hasConceptScore W4322005823C119898033 @default.
- W4322005823 hasConceptScore W4322005823C121332964 @default.
- W4322005823 hasConceptScore W4322005823C122282355 @default.
- W4322005823 hasConceptScore W4322005823C124101348 @default.
- W4322005823 hasConceptScore W4322005823C147947694 @default.
- W4322005823 hasConceptScore W4322005823C151730666 @default.
- W4322005823 hasConceptScore W4322005823C153294291 @default.
- W4322005823 hasConceptScore W4322005823C154945302 @default.
- W4322005823 hasConceptScore W4322005823C163258240 @default.
- W4322005823 hasConceptScore W4322005823C21001229 @default.
- W4322005823 hasConceptScore W4322005823C2779343474 @default.
- W4322005823 hasConceptScore W4322005823C2781084341 @default.
- W4322005823 hasConceptScore W4322005823C41008148 @default.
- W4322005823 hasConceptScore W4322005823C45942800 @default.
- W4322005823 hasConceptScore W4322005823C49937458 @default.
- W4322005823 hasConceptScore W4322005823C50644808 @default.
- W4322005823 hasConceptScore W4322005823C62520636 @default.
- W4322005823 hasConceptScore W4322005823C86803240 @default.
- W4322005823 hasConceptScore W4322005823C89227174 @default.
- W4322005823 hasConceptScore W4322005823C98045186 @default.
- W4322005823 hasLocation W43220058231 @default.
- W4322005823 hasOpenAccess W4322005823 @default.
- W4322005823 hasPrimaryLocation W43220058231 @default.
- W4322005823 hasRelatedWork W2185949831 @default.
- W4322005823 hasRelatedWork W2607339923 @default.
- W4322005823 hasRelatedWork W2787579617 @default.
- W4322005823 hasRelatedWork W3028989322 @default.
- W4322005823 hasRelatedWork W3175135350 @default.
- W4322005823 hasRelatedWork W3208378720 @default.
- W4322005823 hasRelatedWork W4309030289 @default.
- W4322005823 hasRelatedWork W4320085934 @default.
- W4322005823 hasRelatedWork W4322005823 @default.
- W4322005823 hasRelatedWork W4360902828 @default.
- W4322005823 isParatext "false" @default.
- W4322005823 isRetracted "false" @default.
- W4322005823 workType "article" @default.