Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322005829> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4322005829 abstract "Machine learning models trained to reproduce space mission observations are precious resources to fill gaps of missing data in measurement time series or to perform data forecasting within a reasonable uncertainty degree. The latter option is of particular importance for future space missions that will not host instrumentation dedicated to interplanetary medium parameter monitoring. The future LISA mission for low-frequency gravitational wave detection, for instance, will benefit of particle detectors to measure the galactic cosmic-ray integral flux variations and magnetometers that will allow to monitor the passage of large scale magnetic structures through the three LISA spacecraft as part of a diagnostics subsystem. Unfortunately, no instruments dedicated to solar wind speed measurements will be present on board the spacecraft constellation. Moreover, LISA, scheduled to launch in 2035, will trail Earth on the ecliptic at 50 million km distance, far from the orbits of other space missions dedicated to the interplanetary medium monitoring.Based on precious lessons learned with LISA Pathfinder, the ESA LISA precursor mission, about the correlation between galactic cosmic-ray flux short-term variations and solar wind speed increases, we built a machine learning ensemble model able to reconstruct the solar wind trend only on the basis of contemporaneous and preceding observations of galactic cosmic-ray flux variations. Details about the model creation and performance will be presented, together with a description of the underlying data set, weak predictors and training phase. Advantages and limitations will be discussed, showing that the model performance may be enhanced by providing interplanetary magnetic field intensity observations as additional input data, with the goal of providing the LISA mission with an effective solar wind speed predictive tool." @default.
- W4322005829 created "2023-02-26" @default.
- W4322005829 creator A5047889101 @default.
- W4322005829 creator A5065564015 @default.
- W4322005829 date "2023-05-15" @default.
- W4322005829 modified "2023-09-29" @default.
- W4322005829 title "Machine learning ensemble models for solar wind speed prediction" @default.
- W4322005829 doi "https://doi.org/10.5194/egusphere-egu23-7941" @default.
- W4322005829 hasPublicationYear "2023" @default.
- W4322005829 type Work @default.
- W4322005829 citedByCount "0" @default.
- W4322005829 crossrefType "posted-content" @default.
- W4322005829 hasAuthorship W4322005829A5047889101 @default.
- W4322005829 hasAuthorship W4322005829A5065564015 @default.
- W4322005829 hasConcept C108411613 @default.
- W4322005829 hasConcept C111309251 @default.
- W4322005829 hasConcept C115260700 @default.
- W4322005829 hasConcept C121332964 @default.
- W4322005829 hasConcept C127313418 @default.
- W4322005829 hasConcept C127413603 @default.
- W4322005829 hasConcept C1276947 @default.
- W4322005829 hasConcept C130443932 @default.
- W4322005829 hasConcept C146978453 @default.
- W4322005829 hasConcept C151325931 @default.
- W4322005829 hasConcept C153294291 @default.
- W4322005829 hasConcept C170541034 @default.
- W4322005829 hasConcept C194462397 @default.
- W4322005829 hasConcept C29829512 @default.
- W4322005829 hasConcept C54173289 @default.
- W4322005829 hasConcept C62520636 @default.
- W4322005829 hasConcept C62649853 @default.
- W4322005829 hasConceptScore W4322005829C108411613 @default.
- W4322005829 hasConceptScore W4322005829C111309251 @default.
- W4322005829 hasConceptScore W4322005829C115260700 @default.
- W4322005829 hasConceptScore W4322005829C121332964 @default.
- W4322005829 hasConceptScore W4322005829C127313418 @default.
- W4322005829 hasConceptScore W4322005829C127413603 @default.
- W4322005829 hasConceptScore W4322005829C1276947 @default.
- W4322005829 hasConceptScore W4322005829C130443932 @default.
- W4322005829 hasConceptScore W4322005829C146978453 @default.
- W4322005829 hasConceptScore W4322005829C151325931 @default.
- W4322005829 hasConceptScore W4322005829C153294291 @default.
- W4322005829 hasConceptScore W4322005829C170541034 @default.
- W4322005829 hasConceptScore W4322005829C194462397 @default.
- W4322005829 hasConceptScore W4322005829C29829512 @default.
- W4322005829 hasConceptScore W4322005829C54173289 @default.
- W4322005829 hasConceptScore W4322005829C62520636 @default.
- W4322005829 hasConceptScore W4322005829C62649853 @default.
- W4322005829 hasLocation W43220058291 @default.
- W4322005829 hasOpenAccess W4322005829 @default.
- W4322005829 hasPrimaryLocation W43220058291 @default.
- W4322005829 hasRelatedWork W1636773097 @default.
- W4322005829 hasRelatedWork W1980205670 @default.
- W4322005829 hasRelatedWork W1997935893 @default.
- W4322005829 hasRelatedWork W2008367889 @default.
- W4322005829 hasRelatedWork W2057613028 @default.
- W4322005829 hasRelatedWork W2097181244 @default.
- W4322005829 hasRelatedWork W2580412658 @default.
- W4322005829 hasRelatedWork W3108797610 @default.
- W4322005829 hasRelatedWork W3135830710 @default.
- W4322005829 hasRelatedWork W4220882980 @default.
- W4322005829 isParatext "false" @default.
- W4322005829 isRetracted "false" @default.
- W4322005829 workType "article" @default.