Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322005973> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4322005973 abstract "Recent approaches for large-scale mapping of continuous environmental variables by combining ground observations, remote sensing and machine learning have proposed incorporating computer vision capabilities into the model, so that potentially-complex regression features may be learned automatically from covariate datasets, such as of terrain elevation and other satellite imagery (e.g. see Kirkwood et al 2022; 'Bayesian deep learning for spatial interpolation in the presence of auxiliary information').Here we present new research using national-scale land-surface geochemical data to explore and compare how the incorporation of computer vision for automatic feature learning affects the predictive performance of geostastistical interpolators both within and beyond the spatial extents of the study areas in which ground observations are collected. We attempt to characterise empirically how well the predictive performance of different models is preserved with increasing distance from training observations in order to provide insights into the value of incorporating computer vision capabilities into geostatistical models, compared to more traditional approaches." @default.
- W4322005973 created "2023-02-26" @default.
- W4322005973 creator A5001321007 @default.
- W4322005973 creator A5011171507 @default.
- W4322005973 creator A5024784148 @default.
- W4322005973 creator A5087140377 @default.
- W4322005973 date "2023-05-15" @default.
- W4322005973 modified "2023-10-16" @default.
- W4322005973 title "Can learning regression features by computer vision improve the generalisation of geostastistical interpolators?" @default.
- W4322005973 doi "https://doi.org/10.5194/egusphere-egu23-6656" @default.
- W4322005973 hasPublicationYear "2023" @default.
- W4322005973 type Work @default.
- W4322005973 citedByCount "0" @default.
- W4322005973 crossrefType "posted-content" @default.
- W4322005973 hasAuthorship W4322005973A5001321007 @default.
- W4322005973 hasAuthorship W4322005973A5011171507 @default.
- W4322005973 hasAuthorship W4322005973A5024784148 @default.
- W4322005973 hasAuthorship W4322005973A5087140377 @default.
- W4322005973 hasConcept C105795698 @default.
- W4322005973 hasConcept C107673813 @default.
- W4322005973 hasConcept C108583219 @default.
- W4322005973 hasConcept C115961682 @default.
- W4322005973 hasConcept C119043178 @default.
- W4322005973 hasConcept C119857082 @default.
- W4322005973 hasConcept C137800194 @default.
- W4322005973 hasConcept C138885662 @default.
- W4322005973 hasConcept C154945302 @default.
- W4322005973 hasConcept C159620131 @default.
- W4322005973 hasConcept C161840515 @default.
- W4322005973 hasConcept C205649164 @default.
- W4322005973 hasConcept C2776401178 @default.
- W4322005973 hasConcept C2778102629 @default.
- W4322005973 hasConcept C2778755073 @default.
- W4322005973 hasConcept C33923547 @default.
- W4322005973 hasConcept C41008148 @default.
- W4322005973 hasConcept C41895202 @default.
- W4322005973 hasConcept C58640448 @default.
- W4322005973 hasConcept C62649853 @default.
- W4322005973 hasConcept C83546350 @default.
- W4322005973 hasConceptScore W4322005973C105795698 @default.
- W4322005973 hasConceptScore W4322005973C107673813 @default.
- W4322005973 hasConceptScore W4322005973C108583219 @default.
- W4322005973 hasConceptScore W4322005973C115961682 @default.
- W4322005973 hasConceptScore W4322005973C119043178 @default.
- W4322005973 hasConceptScore W4322005973C119857082 @default.
- W4322005973 hasConceptScore W4322005973C137800194 @default.
- W4322005973 hasConceptScore W4322005973C138885662 @default.
- W4322005973 hasConceptScore W4322005973C154945302 @default.
- W4322005973 hasConceptScore W4322005973C159620131 @default.
- W4322005973 hasConceptScore W4322005973C161840515 @default.
- W4322005973 hasConceptScore W4322005973C205649164 @default.
- W4322005973 hasConceptScore W4322005973C2776401178 @default.
- W4322005973 hasConceptScore W4322005973C2778102629 @default.
- W4322005973 hasConceptScore W4322005973C2778755073 @default.
- W4322005973 hasConceptScore W4322005973C33923547 @default.
- W4322005973 hasConceptScore W4322005973C41008148 @default.
- W4322005973 hasConceptScore W4322005973C41895202 @default.
- W4322005973 hasConceptScore W4322005973C58640448 @default.
- W4322005973 hasConceptScore W4322005973C62649853 @default.
- W4322005973 hasConceptScore W4322005973C83546350 @default.
- W4322005973 hasLocation W43220059731 @default.
- W4322005973 hasOpenAccess W4322005973 @default.
- W4322005973 hasPrimaryLocation W43220059731 @default.
- W4322005973 hasRelatedWork W2922457425 @default.
- W4322005973 hasRelatedWork W3014300295 @default.
- W4322005973 hasRelatedWork W3164822677 @default.
- W4322005973 hasRelatedWork W4223943233 @default.
- W4322005973 hasRelatedWork W4225161397 @default.
- W4322005973 hasRelatedWork W4250304930 @default.
- W4322005973 hasRelatedWork W4309045103 @default.
- W4322005973 hasRelatedWork W4312200629 @default.
- W4322005973 hasRelatedWork W4360585206 @default.
- W4322005973 hasRelatedWork W4364306694 @default.
- W4322005973 isParatext "false" @default.
- W4322005973 isRetracted "false" @default.
- W4322005973 workType "article" @default.