Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322006086> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4322006086 abstract "Mangroves are essential ecosystems composed of salt-tolerant plants that grow in tropical and subtropical intertidal zones, acting as a vital link between aquatic and terrestrial ecosystems. Interest in mangrove preservation and restoration has been increasing in recent years due to their important role in climate regulation by capturing and preserving carbon. Despite their importance, these ecosystems are under huge pressure due to human activities. It is estimated that these environments have lost up to half of the area occupied under pristine conditions. Leaf area index (LAI) is a well-known biophysical parameter related to plant health, as it provides information on the water, energy, and CO2 exchange between plants and the atmosphere. Unmanned aerial vehicles (UAVs) have emerged in recent years as a viable solution for ecosystem monitoring, as they allow for rapid and frequent data acquisition of a wide range of wavelengths. In this work, we evaluated the potential of multispectral images acquired by a UAV to estimate the LAI of a mangrove (Avicennia marina) forest located in the coastal area of the Red Sea in the Kingdom of Saudi Arabia. Multicollinearity assessment was performed to select significant variables suited for estimating LAI, including five multispectral bands, a canopy height model, and eight vegetation indices. Multicollinearity assessment was performed with three approaches: the Least Absolute Shrinkage and Selection Operator (LASSO), Random Forest (RF) for variable selection, and Hierarchical Cluster Analysis (HCA). The capability of significant variables to estimate LAI was assessed using the Generalized Linear Model (GLM), RF and Support Vector Machine (SVM). Results showed high estimation accuracy of LAI (R² = 0.91 for GLM, R² = 0.89 for RF and R² = 0.90 for SVM). However, further analysis showed that it is possible to estimate LAI of the mangrove forest with reasonable accuracy (R² = 0.87 for GLM, R² = 0.78 for RF and R² = 0.87 for SVM) using only two variables, the canopy height model and the GreenNDVI. The same variables were used to estimate LAI at another mangrove site and similar results were obtained (R² = 0.74 for GLM, R² = 0.73 for RF and R² = 0.68 for SVM). " @default.
- W4322006086 created "2023-02-26" @default.
- W4322006086 creator A5017261800 @default.
- W4322006086 creator A5033284277 @default.
- W4322006086 creator A5055578242 @default.
- W4322006086 creator A5059114142 @default.
- W4322006086 creator A5075555774 @default.
- W4322006086 creator A5089152837 @default.
- W4322006086 creator A5090673509 @default.
- W4322006086 date "2023-05-15" @default.
- W4322006086 modified "2023-09-28" @default.
- W4322006086 title "Estimation of Mangrove Leaf Area Index using Unmanned Aerial Vehicle multispectral imagery" @default.
- W4322006086 doi "https://doi.org/10.5194/egusphere-egu23-7009" @default.
- W4322006086 hasPublicationYear "2023" @default.
- W4322006086 type Work @default.
- W4322006086 citedByCount "0" @default.
- W4322006086 crossrefType "posted-content" @default.
- W4322006086 hasAuthorship W4322006086A5017261800 @default.
- W4322006086 hasAuthorship W4322006086A5033284277 @default.
- W4322006086 hasAuthorship W4322006086A5055578242 @default.
- W4322006086 hasAuthorship W4322006086A5059114142 @default.
- W4322006086 hasAuthorship W4322006086A5075555774 @default.
- W4322006086 hasAuthorship W4322006086A5089152837 @default.
- W4322006086 hasAuthorship W4322006086A5090673509 @default.
- W4322006086 hasConcept C101000010 @default.
- W4322006086 hasConcept C104541649 @default.
- W4322006086 hasConcept C119857082 @default.
- W4322006086 hasConcept C173163844 @default.
- W4322006086 hasConcept C18903297 @default.
- W4322006086 hasConcept C189285262 @default.
- W4322006086 hasConcept C205649164 @default.
- W4322006086 hasConcept C25989453 @default.
- W4322006086 hasConcept C2778629082 @default.
- W4322006086 hasConcept C39432304 @default.
- W4322006086 hasConcept C41008148 @default.
- W4322006086 hasConcept C48921125 @default.
- W4322006086 hasConcept C62649853 @default.
- W4322006086 hasConcept C68874143 @default.
- W4322006086 hasConcept C86803240 @default.
- W4322006086 hasConceptScore W4322006086C101000010 @default.
- W4322006086 hasConceptScore W4322006086C104541649 @default.
- W4322006086 hasConceptScore W4322006086C119857082 @default.
- W4322006086 hasConceptScore W4322006086C173163844 @default.
- W4322006086 hasConceptScore W4322006086C18903297 @default.
- W4322006086 hasConceptScore W4322006086C189285262 @default.
- W4322006086 hasConceptScore W4322006086C205649164 @default.
- W4322006086 hasConceptScore W4322006086C25989453 @default.
- W4322006086 hasConceptScore W4322006086C2778629082 @default.
- W4322006086 hasConceptScore W4322006086C39432304 @default.
- W4322006086 hasConceptScore W4322006086C41008148 @default.
- W4322006086 hasConceptScore W4322006086C48921125 @default.
- W4322006086 hasConceptScore W4322006086C62649853 @default.
- W4322006086 hasConceptScore W4322006086C68874143 @default.
- W4322006086 hasConceptScore W4322006086C86803240 @default.
- W4322006086 hasLocation W43220060861 @default.
- W4322006086 hasOpenAccess W4322006086 @default.
- W4322006086 hasPrimaryLocation W43220060861 @default.
- W4322006086 hasRelatedWork W1606833481 @default.
- W4322006086 hasRelatedWork W2040458099 @default.
- W4322006086 hasRelatedWork W2043265146 @default.
- W4322006086 hasRelatedWork W2065968650 @default.
- W4322006086 hasRelatedWork W2094562179 @default.
- W4322006086 hasRelatedWork W2169509889 @default.
- W4322006086 hasRelatedWork W2280123932 @default.
- W4322006086 hasRelatedWork W2548132453 @default.
- W4322006086 hasRelatedWork W2889648359 @default.
- W4322006086 hasRelatedWork W2918658248 @default.
- W4322006086 isParatext "false" @default.
- W4322006086 isRetracted "false" @default.
- W4322006086 workType "article" @default.