Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322006170> ?p ?o ?g. }
Showing items 1 to 48 of
48
with 100 items per page.
- W4322006170 abstract "High-magnitude earthquakes are often in seismic zones that initiate the cascading chain of hazards such as co-seismic landslides, soil liquefaction, snow avalanche, surface faulting, devastating rock avalanches, and ground shaking. In the present study, a co-seismic landslide susceptibility analysis was executed for the Bhagirathi valley of Uttarakhand Himalayan region using machine learning techniques based on the slope unit-based method. The study area falls in seismic zone IV, rocks along the fault zone are fragile, and this area is very active seismically. This region has previously experienced Uttarkashi earthquake (1991) of magnitude 6.6. Assessment of seismic induced landslide is considered a complex process, as it considers both static parameters (causative factors) and dynamic parameters (triggering factor) in the form of ground motion shaking effects. In this study, the co-seismic landslide susceptibility maps using the machine learning approach Extreme Gradient Boosting (XgBoost) and Naïve Bayes (NB) techniques have been carried out at Slope Unit-based mapping level. The landslide inventory with 3,000 delineated polygons has been classified into training (80%) and testing (20%) data to calibrate and authenticate the models. For this purpose, static causative factors have been considered, such as slope, aspect, curvature, lineament buffer, drainage buffer, geology, topographic wetness index, and normalized difference vegetation index (NDVI), these parameters have been generated using the CartoDEM and satellite data. Triggering factors Arias Intensity (AI) has been considered for ground motion shaking as a dynamic factor for co-seismic landslides susceptibility mapping. Arias Intensity was prepared using the classical Cornell approach by considering the earthquake catalogue between the years 1700 and 2022. Finally, XgBoost and NB techniques have been used to compute static landslide susceptibility mapping and dynamic co-seismic landslide susceptibility map for a 475-year return period. XgBoost methods at the slope unit level predicted better results. These results were validated using the seismic relative index (SRI) and landslide density method. The prepared map can be effectively helpful for local and regional planning. Keywords: Co-seismic landslide, Slope Unit, Landslide mapping, Machine learning. " @default.
- W4322006170 created "2023-02-26" @default.
- W4322006170 creator A5004267672 @default.
- W4322006170 creator A5040228819 @default.
- W4322006170 creator A5073888763 @default.
- W4322006170 date "2023-05-15" @default.
- W4322006170 modified "2023-09-26" @default.
- W4322006170 title "Co-seismic landslide susceptibility analysis for the Bhagirathi valley of Uttarakhand Himalayan region using machine learning algorithms based on Slope unit techniques" @default.
- W4322006170 doi "https://doi.org/10.5194/egusphere-egu23-6937" @default.
- W4322006170 hasPublicationYear "2023" @default.
- W4322006170 type Work @default.
- W4322006170 citedByCount "0" @default.
- W4322006170 crossrefType "posted-content" @default.
- W4322006170 hasAuthorship W4322006170A5004267672 @default.
- W4322006170 hasAuthorship W4322006170A5040228819 @default.
- W4322006170 hasAuthorship W4322006170A5073888763 @default.
- W4322006170 hasConcept C127313418 @default.
- W4322006170 hasConcept C165205528 @default.
- W4322006170 hasConcept C186295008 @default.
- W4322006170 hasConcept C187320778 @default.
- W4322006170 hasConcept C191859794 @default.
- W4322006170 hasConcept C23509580 @default.
- W4322006170 hasConcept C77928131 @default.
- W4322006170 hasConcept C92596616 @default.
- W4322006170 hasConceptScore W4322006170C127313418 @default.
- W4322006170 hasConceptScore W4322006170C165205528 @default.
- W4322006170 hasConceptScore W4322006170C186295008 @default.
- W4322006170 hasConceptScore W4322006170C187320778 @default.
- W4322006170 hasConceptScore W4322006170C191859794 @default.
- W4322006170 hasConceptScore W4322006170C23509580 @default.
- W4322006170 hasConceptScore W4322006170C77928131 @default.
- W4322006170 hasConceptScore W4322006170C92596616 @default.
- W4322006170 hasLocation W43220061701 @default.
- W4322006170 hasOpenAccess W4322006170 @default.
- W4322006170 hasPrimaryLocation W43220061701 @default.
- W4322006170 hasRelatedWork W1483709865 @default.
- W4322006170 hasRelatedWork W2005837972 @default.
- W4322006170 hasRelatedWork W2030207570 @default.
- W4322006170 hasRelatedWork W2141124577 @default.
- W4322006170 hasRelatedWork W2329429228 @default.
- W4322006170 hasRelatedWork W2372219745 @default.
- W4322006170 hasRelatedWork W2377997648 @default.
- W4322006170 hasRelatedWork W2638320747 @default.
- W4322006170 hasRelatedWork W4226142241 @default.
- W4322006170 hasRelatedWork W4283641493 @default.
- W4322006170 isParatext "false" @default.
- W4322006170 isRetracted "false" @default.
- W4322006170 workType "article" @default.