Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322006341> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4322006341 abstract "Nitrogen dioxide (NO2) is among the major air pollutants in Europe posing severe hazard to environmental and human health. The concentrations of surface NO2 are measured by ground monitoring stations which are fairly limited in representation and distribution. While NO2 estimates from chemical transport models are realistic, their complexity makes them computationally intensive. Satellite observations from instruments such as TROPOMI provide high spatiotemporal distribution of NO2. However, these instruments capture NO2 density only along the tropospheric column and not on the surface. Exploiting the availability of ground station measurements and spatially continuous information from TROPOMI, this study estimates surface NO2 concentrations over Europe at 1km spatial resolution for 2019-2021 using XGBoost machine learning model. While ground measurements are used as target reference features, satellite observations such as tropospheric column density of NO2 (from TROPOMI), night light radiance (from VIIRS), NDVI (from MODIS) and modelled meteorological parameters such as planetary boundary layer height, wind velocity, temperature are used as input features to the model. We find an overall mean absolute error of 7.87µg/m3, mean bias of -3.13µg/m3 and spearman correlation of 0.61 during model validation. We found that the performance of the model is influenced by NO2 concentration levels and is most reliable for predictions at concentration levels <40µg/m3 with a relative bias of <40%. The spatial error analysis also indicates the spatial robustness of the model across the study area. The importance of input features is evaluated using SHapley Additive exPlanations (SHAP), which shows TROPOMI NO2 being the most important source for the modelled NO2 predictions. Furthermore, SHAP values also highlight the role of VIIRS night light radiance in deriving finer detailed spatial patterns of surface NO2 estimates. Despite the complex non-linear relationship of the input features, the trained XGBoost model requires an average of 570 seconds to predict single day surface NO2 concentrations for the large study area of continental scale. Thus, this work evaluates the importance of TROPOMI data and reliability of machine learning models for estimating surface NO2 concentrations on a larger spatial scale." @default.
- W4322006341 created "2023-02-26" @default.
- W4322006341 creator A5020712410 @default.
- W4322006341 creator A5059660583 @default.
- W4322006341 creator A5086592897 @default.
- W4322006341 creator A5086821865 @default.
- W4322006341 creator A5091659615 @default.
- W4322006341 creator A5001107724 @default.
- W4322006341 date "2023-05-15" @default.
- W4322006341 modified "2023-09-27" @default.
- W4322006341 title "Evaluation of TROPOMI observations for estimating surface NO2 concentrations over Europe using XGBoost Model" @default.
- W4322006341 doi "https://doi.org/10.5194/egusphere-egu23-7796" @default.
- W4322006341 hasPublicationYear "2023" @default.
- W4322006341 type Work @default.
- W4322006341 citedByCount "0" @default.
- W4322006341 crossrefType "posted-content" @default.
- W4322006341 hasAuthorship W4322006341A5001107724 @default.
- W4322006341 hasAuthorship W4322006341A5020712410 @default.
- W4322006341 hasAuthorship W4322006341A5059660583 @default.
- W4322006341 hasAuthorship W4322006341A5086592897 @default.
- W4322006341 hasAuthorship W4322006341A5086821865 @default.
- W4322006341 hasAuthorship W4322006341A5091659615 @default.
- W4322006341 hasConcept C127313418 @default.
- W4322006341 hasConcept C127413603 @default.
- W4322006341 hasConcept C146978453 @default.
- W4322006341 hasConcept C153294291 @default.
- W4322006341 hasConcept C19269812 @default.
- W4322006341 hasConcept C205649164 @default.
- W4322006341 hasConcept C23690007 @default.
- W4322006341 hasConcept C2777016058 @default.
- W4322006341 hasConcept C2780723490 @default.
- W4322006341 hasConcept C39432304 @default.
- W4322006341 hasConcept C62649853 @default.
- W4322006341 hasConcept C9075549 @default.
- W4322006341 hasConcept C91586092 @default.
- W4322006341 hasConceptScore W4322006341C127313418 @default.
- W4322006341 hasConceptScore W4322006341C127413603 @default.
- W4322006341 hasConceptScore W4322006341C146978453 @default.
- W4322006341 hasConceptScore W4322006341C153294291 @default.
- W4322006341 hasConceptScore W4322006341C19269812 @default.
- W4322006341 hasConceptScore W4322006341C205649164 @default.
- W4322006341 hasConceptScore W4322006341C23690007 @default.
- W4322006341 hasConceptScore W4322006341C2777016058 @default.
- W4322006341 hasConceptScore W4322006341C2780723490 @default.
- W4322006341 hasConceptScore W4322006341C39432304 @default.
- W4322006341 hasConceptScore W4322006341C62649853 @default.
- W4322006341 hasConceptScore W4322006341C9075549 @default.
- W4322006341 hasConceptScore W4322006341C91586092 @default.
- W4322006341 hasLocation W43220063411 @default.
- W4322006341 hasOpenAccess W4322006341 @default.
- W4322006341 hasPrimaryLocation W43220063411 @default.
- W4322006341 hasRelatedWork W1640458325 @default.
- W4322006341 hasRelatedWork W1978678278 @default.
- W4322006341 hasRelatedWork W1990519390 @default.
- W4322006341 hasRelatedWork W2002467301 @default.
- W4322006341 hasRelatedWork W2010737141 @default.
- W4322006341 hasRelatedWork W2139856717 @default.
- W4322006341 hasRelatedWork W2146468692 @default.
- W4322006341 hasRelatedWork W2375831854 @default.
- W4322006341 hasRelatedWork W2942913183 @default.
- W4322006341 hasRelatedWork W3046043599 @default.
- W4322006341 isParatext "false" @default.
- W4322006341 isRetracted "false" @default.
- W4322006341 workType "article" @default.