Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322006436> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4322006436 abstract "Seismogram records always contain seismic noise from different sources. Previous studies have shown that denoising autoencoders can be used to suppress different types of disturbing noise at seismological stations, even when earthquake signal and noise share common frequency bands. A denoising autoencoder is a convolutional neural network that learns from a large training data set how to separate earthquake signal and noise. To train the denoising autoencoder, we used earthquake signals with high signal-to-noise ratio from the Stanford Earthquake Dataset and noise from single seismological stations. We used 160 seismological stations in Germany and surrounding countries and trained a denoising autoencoder model for each station. Afterwards, one year of continuous recorded data have been denoised.EQTransformer, a deep-learning model for earthquake detection and phase picking, was then applied to the raw and denoised data of each station. Working with denoised data leads to a massive increase of earthquake detections. First results show that in dense seismic networks more than 100% additional earthquakes can be detected compared to events detected in the raw data set. Moreover, the localization accuracy is increased as more stations can be used.However, like common filter techniques, denoising autoencoders decrease the waveform amplitude. Since earthquake magnitudes are often determined from these amplitudes, we expect a lower amplitude and thus a lower magnitude when using denoised data instead of raw data. So far, we did not find an empirical relation between the raw and denoised magnitude." @default.
- W4322006436 created "2023-02-26" @default.
- W4322006436 creator A5032892058 @default.
- W4322006436 creator A5058140721 @default.
- W4322006436 creator A5091633584 @default.
- W4322006436 date "2023-05-15" @default.
- W4322006436 modified "2023-09-29" @default.
- W4322006436 title "How does a denoising autoencoder improve earthquake detection and the estimation of magnitude in seismic networks?" @default.
- W4322006436 doi "https://doi.org/10.5194/egusphere-egu23-6862" @default.
- W4322006436 hasPublicationYear "2023" @default.
- W4322006436 type Work @default.
- W4322006436 citedByCount "0" @default.
- W4322006436 crossrefType "posted-content" @default.
- W4322006436 hasAuthorship W4322006436A5032892058 @default.
- W4322006436 hasAuthorship W4322006436A5058140721 @default.
- W4322006436 hasAuthorship W4322006436A5091633584 @default.
- W4322006436 hasConcept C101738243 @default.
- W4322006436 hasConcept C115961682 @default.
- W4322006436 hasConcept C121332964 @default.
- W4322006436 hasConcept C126691448 @default.
- W4322006436 hasConcept C127313418 @default.
- W4322006436 hasConcept C1276947 @default.
- W4322006436 hasConcept C132964779 @default.
- W4322006436 hasConcept C153180895 @default.
- W4322006436 hasConcept C154945302 @default.
- W4322006436 hasConcept C163294075 @default.
- W4322006436 hasConcept C165205528 @default.
- W4322006436 hasConcept C169744125 @default.
- W4322006436 hasConcept C199360897 @default.
- W4322006436 hasConcept C2779843651 @default.
- W4322006436 hasConcept C41008148 @default.
- W4322006436 hasConcept C50644808 @default.
- W4322006436 hasConcept C58489278 @default.
- W4322006436 hasConcept C90626213 @default.
- W4322006436 hasConcept C99498987 @default.
- W4322006436 hasConceptScore W4322006436C101738243 @default.
- W4322006436 hasConceptScore W4322006436C115961682 @default.
- W4322006436 hasConceptScore W4322006436C121332964 @default.
- W4322006436 hasConceptScore W4322006436C126691448 @default.
- W4322006436 hasConceptScore W4322006436C127313418 @default.
- W4322006436 hasConceptScore W4322006436C1276947 @default.
- W4322006436 hasConceptScore W4322006436C132964779 @default.
- W4322006436 hasConceptScore W4322006436C153180895 @default.
- W4322006436 hasConceptScore W4322006436C154945302 @default.
- W4322006436 hasConceptScore W4322006436C163294075 @default.
- W4322006436 hasConceptScore W4322006436C165205528 @default.
- W4322006436 hasConceptScore W4322006436C169744125 @default.
- W4322006436 hasConceptScore W4322006436C199360897 @default.
- W4322006436 hasConceptScore W4322006436C2779843651 @default.
- W4322006436 hasConceptScore W4322006436C41008148 @default.
- W4322006436 hasConceptScore W4322006436C50644808 @default.
- W4322006436 hasConceptScore W4322006436C58489278 @default.
- W4322006436 hasConceptScore W4322006436C90626213 @default.
- W4322006436 hasConceptScore W4322006436C99498987 @default.
- W4322006436 hasLocation W43220064361 @default.
- W4322006436 hasOpenAccess W4322006436 @default.
- W4322006436 hasPrimaryLocation W43220064361 @default.
- W4322006436 hasRelatedWork W1490186205 @default.
- W4322006436 hasRelatedWork W1532182975 @default.
- W4322006436 hasRelatedWork W2048069352 @default.
- W4322006436 hasRelatedWork W2374124698 @default.
- W4322006436 hasRelatedWork W2516113038 @default.
- W4322006436 hasRelatedWork W2594268324 @default.
- W4322006436 hasRelatedWork W3154596160 @default.
- W4322006436 hasRelatedWork W4210923981 @default.
- W4322006436 hasRelatedWork W4287995534 @default.
- W4322006436 hasRelatedWork W93184676 @default.
- W4322006436 isParatext "false" @default.
- W4322006436 isRetracted "false" @default.
- W4322006436 workType "article" @default.