Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322006501> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4322006501 abstract "It has become increasingly apparent over the past few decades that environmental degradation is something of a common concern for humanity and it is difficult to deny that the present environmental problems are caused primarily by anthropogenic activities rather than natural causes.To minimize disaster’s risk, the role of geospatial science and technology may be a terribly helpful and necessary technique for hazard zone mapping throughout emergency conditions. This approach can definitively help predict harmful events, but also to mitigate damage to the environment from events that cannot be efficiently predicted.With detailed information obtained through various dataset, decision making has become simpler. This fact is crucial for a quick and effective response to any disaster. Remote sensing, in particular RADAR/SAR data, help in managing a disaster at various stages. Prevention for example refers to the outright avoidance of adverse impacts of hazards and related disasters; preparedness refers to the knowledge and capacities to effectively anticipate, respond to, and recover from, the impacts of likely, imminent or current hazard events or conditions.Finally relief is the provision of emergency services after a disaster in order to reduce damage to environment and people.Thanks to the opportunity proposed by ASI (Italian Space Agency) to use COSMO-SkyMed data, in NeMeA Sistemi srl we developed two projects: “Ventimiglia Legalità”, “Edilizia Spontanea” and 3xA.Their main objective is to detect illegal buildings not present in the land Legal registry.We developed new and innovative technologies using integrated data for the monitoring and protection of environmental and anthropogenic health, in coastal and nearby areas. 3xA project addresses the highly challenging problem of automatically detecting changes from a time series of high-resolution synthetic aperture radar (SAR) images. In this context, to fully leverage the potential of such data, an innovative machine learning based approach has been developed. The project is characterized by an end-to-end training and inference system which takes as input two raw images and produces a vectorized change map without any human supervision.More into the details, it takes as input two SAR acquisitions at time t1 and t2, the acquisitions are firstly pre-processed, homogenised and finally undergo a completely self-supervised algorithm which takes advantage of DNNs to classify changed/unchanged areas. This method shows promising results in automatically producing a change map from two input SAR images (Stripmap or Spotlight COSMO-SkyMed data), with 98% accuracy.Being the process automated, results are produced faster than similar products generated by human operators.A similar approach has been followed to create an algorithm which performs semantic segmentation from the same kind of data.This time, only one of the two SAR acquisitions is taken as input for pre-processing steps and then for a supervised neural network. The result is a single image where each pixel is labelled with the class predicted by the algorithm. Also in this case, results are promising, reaching around 90% of accuracy. " @default.
- W4322006501 created "2023-02-26" @default.
- W4322006501 creator A5083840583 @default.
- W4322006501 date "2023-05-15" @default.
- W4322006501 modified "2023-09-27" @default.
- W4322006501 title "A new approach for hazard and disaster prevention: deep learning algorithms for change detection and classification RADAR/SAR" @default.
- W4322006501 doi "https://doi.org/10.5194/egusphere-egu23-6522" @default.
- W4322006501 hasPublicationYear "2023" @default.
- W4322006501 type Work @default.
- W4322006501 citedByCount "0" @default.
- W4322006501 crossrefType "posted-content" @default.
- W4322006501 hasAuthorship W4322006501A5083840583 @default.
- W4322006501 hasConcept C107826830 @default.
- W4322006501 hasConcept C108170787 @default.
- W4322006501 hasConcept C111472728 @default.
- W4322006501 hasConcept C112930515 @default.
- W4322006501 hasConcept C138885662 @default.
- W4322006501 hasConcept C144133560 @default.
- W4322006501 hasConcept C17744445 @default.
- W4322006501 hasConcept C178790620 @default.
- W4322006501 hasConcept C185592680 @default.
- W4322006501 hasConcept C199539241 @default.
- W4322006501 hasConcept C205649164 @default.
- W4322006501 hasConcept C2777042776 @default.
- W4322006501 hasConcept C39432304 @default.
- W4322006501 hasConcept C41008148 @default.
- W4322006501 hasConcept C49261128 @default.
- W4322006501 hasConcept C62555980 @default.
- W4322006501 hasConcept C62649853 @default.
- W4322006501 hasConcept C91375879 @default.
- W4322006501 hasConcept C9770341 @default.
- W4322006501 hasConceptScore W4322006501C107826830 @default.
- W4322006501 hasConceptScore W4322006501C108170787 @default.
- W4322006501 hasConceptScore W4322006501C111472728 @default.
- W4322006501 hasConceptScore W4322006501C112930515 @default.
- W4322006501 hasConceptScore W4322006501C138885662 @default.
- W4322006501 hasConceptScore W4322006501C144133560 @default.
- W4322006501 hasConceptScore W4322006501C17744445 @default.
- W4322006501 hasConceptScore W4322006501C178790620 @default.
- W4322006501 hasConceptScore W4322006501C185592680 @default.
- W4322006501 hasConceptScore W4322006501C199539241 @default.
- W4322006501 hasConceptScore W4322006501C205649164 @default.
- W4322006501 hasConceptScore W4322006501C2777042776 @default.
- W4322006501 hasConceptScore W4322006501C39432304 @default.
- W4322006501 hasConceptScore W4322006501C41008148 @default.
- W4322006501 hasConceptScore W4322006501C49261128 @default.
- W4322006501 hasConceptScore W4322006501C62555980 @default.
- W4322006501 hasConceptScore W4322006501C62649853 @default.
- W4322006501 hasConceptScore W4322006501C91375879 @default.
- W4322006501 hasConceptScore W4322006501C9770341 @default.
- W4322006501 hasLocation W43220065011 @default.
- W4322006501 hasOpenAccess W4322006501 @default.
- W4322006501 hasPrimaryLocation W43220065011 @default.
- W4322006501 hasRelatedWork W2146710359 @default.
- W4322006501 hasRelatedWork W2163020556 @default.
- W4322006501 hasRelatedWork W2168633986 @default.
- W4322006501 hasRelatedWork W2333922371 @default.
- W4322006501 hasRelatedWork W2783560484 @default.
- W4322006501 hasRelatedWork W2909455058 @default.
- W4322006501 hasRelatedWork W3100995790 @default.
- W4322006501 hasRelatedWork W3173675344 @default.
- W4322006501 hasRelatedWork W3214440407 @default.
- W4322006501 hasRelatedWork W4319440096 @default.
- W4322006501 isParatext "false" @default.
- W4322006501 isRetracted "false" @default.
- W4322006501 workType "article" @default.