Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322006618> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4322006618 abstract "Air pollution is one of the most important environmental problems in China. As a major air pollutant, ozone (O3) will endanger human health and terrestrial ecosystems. It is of great practical significance to obtain a continuous full-coverage dataset of ozone with high spatio-temporal resolution to conduct mechanism research from its causes, development, diffusion, impact and other aspects. In this study, a 3-stage machine learning model was developed through multiple data fusion, and the LightGBM method is used to obtain the hourly spatio-temporal distribution dataset of the O3 concentration in China from 2013 to 2020, with a resolution of 0.25 °× 0.25°. We first revise the meteorological reanalysis data using ground observation and propose a data fusion algorithm to achieve the ground level distribution of ozone, which combines ground observation of pollutants, population data, revised reanalysis meteorological conditions, reanalysis of radiation, land and vegetation data, emission inventory and results of chemical transport model simulation.  In addition, due to the common phenomenon that the previous prediction models underestimate the extreme value of the pollution periods,therefore, we redefined the heavy pollution event and assimilated it into the 0.25 grid by using the synthetic minimum oversampling technique (SMOTE) method to improve the model performance during the extreme pollution periods.Our model, with the 10-fold CV result of R2 = 71% and RMSE= 25.1μg·m-3, and our hourly O3 concentration results are spatially and spatially continuous with a similar distribution compare to the observation, which proves the reliability of our model. With higher time resolution, various exposure response indicators can be obtained. AOT40 calculated by high-resolution hourly ozone concentration further, which is far more accurate than it when directly predicted by daily indexs modeling.In addition, based on the distribution of AOT40, we assessed the agricultural damage and ecological damage caused by the change of surface ozone pollution during 2013-2020. Our estimation considered the planting area and phenological period of crops that the overestimation of crop RYL in the region can be avoided. The annual avrage production loss of wheat, rice and maize in China from 2013 to 2020 is 55.0, 57.4 and 23.6 Mt, respectively. Besides, The loss of gross primary productivity was also estimated. During 2013-2020, the ozone pollution in China caused an annual average loss of 2.1%, and the loss in the south was much higher than that in the north." @default.
- W4322006618 created "2023-02-26" @default.
- W4322006618 creator A5001608625 @default.
- W4322006618 creator A5036577012 @default.
- W4322006618 creator A5039837606 @default.
- W4322006618 creator A5056359739 @default.
- W4322006618 creator A5065174727 @default.
- W4322006618 creator A5074053393 @default.
- W4322006618 creator A5081118693 @default.
- W4322006618 date "2023-05-15" @default.
- W4322006618 modified "2023-10-01" @default.
- W4322006618 title "Near Real-Time Distribution of Ozone in China from 2013 to 2020 and Agricultural Impacts" @default.
- W4322006618 doi "https://doi.org/10.5194/egusphere-egu23-6562" @default.
- W4322006618 hasPublicationYear "2023" @default.
- W4322006618 type Work @default.
- W4322006618 citedByCount "0" @default.
- W4322006618 crossrefType "posted-content" @default.
- W4322006618 hasAuthorship W4322006618A5001608625 @default.
- W4322006618 hasAuthorship W4322006618A5036577012 @default.
- W4322006618 hasAuthorship W4322006618A5039837606 @default.
- W4322006618 hasAuthorship W4322006618A5056359739 @default.
- W4322006618 hasAuthorship W4322006618A5065174727 @default.
- W4322006618 hasAuthorship W4322006618A5074053393 @default.
- W4322006618 hasAuthorship W4322006618A5081118693 @default.
- W4322006618 hasConcept C127313418 @default.
- W4322006618 hasConcept C142724271 @default.
- W4322006618 hasConcept C144024400 @default.
- W4322006618 hasConcept C149923435 @default.
- W4322006618 hasConcept C153294291 @default.
- W4322006618 hasConcept C178790620 @default.
- W4322006618 hasConcept C185592680 @default.
- W4322006618 hasConcept C18903297 @default.
- W4322006618 hasConcept C205649164 @default.
- W4322006618 hasConcept C2776133958 @default.
- W4322006618 hasConcept C2908647359 @default.
- W4322006618 hasConcept C2910478969 @default.
- W4322006618 hasConcept C39432304 @default.
- W4322006618 hasConcept C508106653 @default.
- W4322006618 hasConcept C521259446 @default.
- W4322006618 hasConcept C559116025 @default.
- W4322006618 hasConcept C71924100 @default.
- W4322006618 hasConcept C82685317 @default.
- W4322006618 hasConcept C86803240 @default.
- W4322006618 hasConcept C91586092 @default.
- W4322006618 hasConceptScore W4322006618C127313418 @default.
- W4322006618 hasConceptScore W4322006618C142724271 @default.
- W4322006618 hasConceptScore W4322006618C144024400 @default.
- W4322006618 hasConceptScore W4322006618C149923435 @default.
- W4322006618 hasConceptScore W4322006618C153294291 @default.
- W4322006618 hasConceptScore W4322006618C178790620 @default.
- W4322006618 hasConceptScore W4322006618C185592680 @default.
- W4322006618 hasConceptScore W4322006618C18903297 @default.
- W4322006618 hasConceptScore W4322006618C205649164 @default.
- W4322006618 hasConceptScore W4322006618C2776133958 @default.
- W4322006618 hasConceptScore W4322006618C2908647359 @default.
- W4322006618 hasConceptScore W4322006618C2910478969 @default.
- W4322006618 hasConceptScore W4322006618C39432304 @default.
- W4322006618 hasConceptScore W4322006618C508106653 @default.
- W4322006618 hasConceptScore W4322006618C521259446 @default.
- W4322006618 hasConceptScore W4322006618C559116025 @default.
- W4322006618 hasConceptScore W4322006618C71924100 @default.
- W4322006618 hasConceptScore W4322006618C82685317 @default.
- W4322006618 hasConceptScore W4322006618C86803240 @default.
- W4322006618 hasConceptScore W4322006618C91586092 @default.
- W4322006618 hasLocation W43220066181 @default.
- W4322006618 hasOpenAccess W4322006618 @default.
- W4322006618 hasPrimaryLocation W43220066181 @default.
- W4322006618 hasRelatedWork W2201031442 @default.
- W4322006618 hasRelatedWork W2352002076 @default.
- W4322006618 hasRelatedWork W2381477504 @default.
- W4322006618 hasRelatedWork W2381763096 @default.
- W4322006618 hasRelatedWork W2617518876 @default.
- W4322006618 hasRelatedWork W2894719683 @default.
- W4322006618 hasRelatedWork W2901506125 @default.
- W4322006618 hasRelatedWork W2905968983 @default.
- W4322006618 hasRelatedWork W4293766109 @default.
- W4322006618 hasRelatedWork W4312594942 @default.
- W4322006618 isParatext "false" @default.
- W4322006618 isRetracted "false" @default.
- W4322006618 workType "article" @default.