Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322006695> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4322006695 abstract "The integration of global land surface remote sensing and in situ measured ecosystem carbon fluxes through machine learning approaches offers a unique data-driven perspective to diagnose the carbon cycle. Earth Observation (EO) data sets from different parts of the electromagnetic spectrum contain specific information on the land surface status, but also on the structural and physiological vegetation conditions. Each EO-derived land surface variable alone has a limited scope, addresses only individual aspects of the complex system, and can be confounded by other factors.  Here we use the new generation statistical flux upscaling framework Fluxcom-X to analyse the individual and synergistic contributions of different EO data sets to site-level terrestrial carbon fluxes in tailored cross-validation experiments. Several distinct data streams are explored as predictor variables:  land surface temperature (LST) from both polar orbiters and geostationary satellites (MODIS and SEVIRI), far-red SIF from GOME2, multi-spectral vegetation optical depth (VOD) from different sources (ku-band climate archive from Moesinger et al.(2020) and L-band from SMOS), and soil moisture (SM) from ESA CCI.  Each predictor variable undergoes a dedicated pre-processing in terms of quality checks and gap-filling. Beyond their overall added value in prediction skill, we are interested in the impacts of the EO predictors on different scales of carbon flux variability (e.g. diurnal, seasonal, seasonal anomalies, inter-annual, and between sites), specifically during situations of unusual water scarcity and surplus. We also compute SHAP values to understand how the machine learning model uses the EO information. Additionally, a second line of analysis addresses the role of acquisition properties for the accuracy of the estimates.The first results for the predictor variable MODIS LST show that the inclusion of MODIS LST improves GPP estimates on all time scales.  The model strongly profits from LST as surrogate for moisture availability during dry anomalies, and for light availability during wet anomalies. Regarding the impact of acquisition properties of MODIS, we find that the variability in viewing geometry and overpass time does not affect the accuracy of simulated site-level GPP. However, failing to account for the clear-sky bias in availability of MODIS LST will result in a substantial decrease in accuracy, especially for overcast days.Further experiments will include SEVIRI LST, SIF, VOD, as well as soil moisture, and we will analyse their role in the data-driven simulations of carbon fluxes. The lessons learned from the site-level cross-validation experiments will guide the production of gridded estimates of gross and net carbon fluxes for Europe and the globe." @default.
- W4322006695 created "2023-02-26" @default.
- W4322006695 creator A5003468226 @default.
- W4322006695 creator A5006870984 @default.
- W4322006695 creator A5011943042 @default.
- W4322006695 creator A5020381091 @default.
- W4322006695 creator A5023265994 @default.
- W4322006695 creator A5028824538 @default.
- W4322006695 creator A5037687266 @default.
- W4322006695 creator A5046995694 @default.
- W4322006695 creator A5054048104 @default.
- W4322006695 creator A5061910536 @default.
- W4322006695 creator A5067588216 @default.
- W4322006695 creator A5088465455 @default.
- W4322006695 creator A5088518218 @default.
- W4322006695 date "2023-05-15" @default.
- W4322006695 modified "2023-09-29" @default.
- W4322006695 title "Improved data-driven ecosystem carbon fluxes under moisture stress through synergistic Earth observations" @default.
- W4322006695 doi "https://doi.org/10.5194/egusphere-egu23-8175" @default.
- W4322006695 hasPublicationYear "2023" @default.
- W4322006695 type Work @default.
- W4322006695 citedByCount "0" @default.
- W4322006695 crossrefType "posted-content" @default.
- W4322006695 hasAuthorship W4322006695A5003468226 @default.
- W4322006695 hasAuthorship W4322006695A5006870984 @default.
- W4322006695 hasAuthorship W4322006695A5011943042 @default.
- W4322006695 hasAuthorship W4322006695A5020381091 @default.
- W4322006695 hasAuthorship W4322006695A5023265994 @default.
- W4322006695 hasAuthorship W4322006695A5028824538 @default.
- W4322006695 hasAuthorship W4322006695A5037687266 @default.
- W4322006695 hasAuthorship W4322006695A5046995694 @default.
- W4322006695 hasAuthorship W4322006695A5054048104 @default.
- W4322006695 hasAuthorship W4322006695A5061910536 @default.
- W4322006695 hasAuthorship W4322006695A5067588216 @default.
- W4322006695 hasAuthorship W4322006695A5088465455 @default.
- W4322006695 hasAuthorship W4322006695A5088518218 @default.
- W4322006695 hasConcept C110872660 @default.
- W4322006695 hasConcept C121332964 @default.
- W4322006695 hasConcept C127313418 @default.
- W4322006695 hasConcept C1276947 @default.
- W4322006695 hasConcept C142724271 @default.
- W4322006695 hasConcept C187320778 @default.
- W4322006695 hasConcept C18903297 @default.
- W4322006695 hasConcept C191897082 @default.
- W4322006695 hasConcept C192562407 @default.
- W4322006695 hasConcept C19269812 @default.
- W4322006695 hasConcept C205649164 @default.
- W4322006695 hasConcept C24939127 @default.
- W4322006695 hasConcept C2776133958 @default.
- W4322006695 hasConcept C39399123 @default.
- W4322006695 hasConcept C39432304 @default.
- W4322006695 hasConcept C62649853 @default.
- W4322006695 hasConcept C68709404 @default.
- W4322006695 hasConcept C6939412 @default.
- W4322006695 hasConcept C71924100 @default.
- W4322006695 hasConcept C86803240 @default.
- W4322006695 hasConcept C91586092 @default.
- W4322006695 hasConceptScore W4322006695C110872660 @default.
- W4322006695 hasConceptScore W4322006695C121332964 @default.
- W4322006695 hasConceptScore W4322006695C127313418 @default.
- W4322006695 hasConceptScore W4322006695C1276947 @default.
- W4322006695 hasConceptScore W4322006695C142724271 @default.
- W4322006695 hasConceptScore W4322006695C187320778 @default.
- W4322006695 hasConceptScore W4322006695C18903297 @default.
- W4322006695 hasConceptScore W4322006695C191897082 @default.
- W4322006695 hasConceptScore W4322006695C192562407 @default.
- W4322006695 hasConceptScore W4322006695C19269812 @default.
- W4322006695 hasConceptScore W4322006695C205649164 @default.
- W4322006695 hasConceptScore W4322006695C24939127 @default.
- W4322006695 hasConceptScore W4322006695C2776133958 @default.
- W4322006695 hasConceptScore W4322006695C39399123 @default.
- W4322006695 hasConceptScore W4322006695C39432304 @default.
- W4322006695 hasConceptScore W4322006695C62649853 @default.
- W4322006695 hasConceptScore W4322006695C68709404 @default.
- W4322006695 hasConceptScore W4322006695C6939412 @default.
- W4322006695 hasConceptScore W4322006695C71924100 @default.
- W4322006695 hasConceptScore W4322006695C86803240 @default.
- W4322006695 hasConceptScore W4322006695C91586092 @default.
- W4322006695 hasLocation W43220066951 @default.
- W4322006695 hasOpenAccess W4322006695 @default.
- W4322006695 hasPrimaryLocation W43220066951 @default.
- W4322006695 hasRelatedWork W1968556746 @default.
- W4322006695 hasRelatedWork W2053804748 @default.
- W4322006695 hasRelatedWork W2063375513 @default.
- W4322006695 hasRelatedWork W2079270486 @default.
- W4322006695 hasRelatedWork W2116047388 @default.
- W4322006695 hasRelatedWork W2126095845 @default.
- W4322006695 hasRelatedWork W2161197664 @default.
- W4322006695 hasRelatedWork W2182195605 @default.
- W4322006695 hasRelatedWork W2245549564 @default.
- W4322006695 hasRelatedWork W2901176169 @default.
- W4322006695 isParatext "false" @default.
- W4322006695 isRetracted "false" @default.
- W4322006695 workType "article" @default.