Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322006781> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4322006781 abstract "Scattered trees in farmer fields, also known as agroforestry parkland, are integrated part of West African smallholder agricultural landscapes. While they are used for centuries by farmers, they are now recognised by the scientific and politic communities as a mean to face climate changes (Skole et al., 2021). Fractional cover (FCover) is an important biophysical parameter allowing to monitor the crop growth. Satellite images has been proven very efficient for crop FCover estimation in various ecosystems (Gräzing et al 2021). However, in agroforestry parklands, the presence of trees inside the fields induced a huge variability that can be hardly captured by traditional approach relying on satellite images and ground information. We propose an original empirical framework relying on the combining use of UAV-based FCover and Sentinel-2 data to estimate the pearl millet FCover at landscape scale in an agroforestry parkland of Senegal. 6 UAV images were acquired during the 2021 cropping season and the millet FCover has been derived from a threshold of UAV images for 95 subplots on a 3-m grid and used as targeted variable. 4 vegetation indices and 8 texture featured calculated from S2 data were used as models’ predictors. 3 machine learning regression algorithms (RF, GBM and SVM) and a multiple linear regression (MLR) model were calibrated over the 3-m grid using a cross-validation approach and different scenarii of modelling were tested: (1) fit the four models date by date dataset, (2) fit the four models on all dates dataset with and without date information as predictor, (3) single models vs a meta-model resulting from the stacking of the different models. Our results evidenced that for each model tested the accuracy is dependent to the millet growth stage, the vegetative period being overall the one allowing to reach the higher accuracy. MLR is not adapted to estimate millet FCover (R² between 0.07 and 0.13) while the machine learning models gave overall good results, RF being the better one (R² between 0.45 and 0.69).We have shown that the use of date information as predictor allowed to improve the FCover estimation (R² increases up to 24%) however, the use of a meta-model didn’t significantly improve the accuracy suggesting that RF, GBM and SVM are robust enough for millet FCover estimation in such kind of landscape.While the original workflow we proposed in this study need to be confirmed by adding data from the 2022 cropping season, the results obtained show promising opportunities for improving the crop monitoring in heterogeneous landscapes. The next step will be to better understand the influence of trees on the millet FCover, at the field scale and at the landscape scale." @default.
- W4322006781 created "2023-02-26" @default.
- W4322006781 creator A5002458766 @default.
- W4322006781 creator A5011256310 @default.
- W4322006781 creator A5017766675 @default.
- W4322006781 creator A5027555087 @default.
- W4322006781 creator A5031979930 @default.
- W4322006781 creator A5036740480 @default.
- W4322006781 creator A5044986403 @default.
- W4322006781 creator A5087307109 @default.
- W4322006781 creator A5087437332 @default.
- W4322006781 creator A5090625258 @default.
- W4322006781 date "2023-05-15" @default.
- W4322006781 modified "2023-09-30" @default.
- W4322006781 title "Estimation of crop fractional cover (FCover) in smallholder farming systems using UAV and Sentinel-2 images : Case study of a Senegalese agroforestry parkland" @default.
- W4322006781 doi "https://doi.org/10.5194/egusphere-egu23-6674" @default.
- W4322006781 hasPublicationYear "2023" @default.
- W4322006781 type Work @default.
- W4322006781 citedByCount "0" @default.
- W4322006781 crossrefType "posted-content" @default.
- W4322006781 hasAuthorship W4322006781A5002458766 @default.
- W4322006781 hasAuthorship W4322006781A5011256310 @default.
- W4322006781 hasAuthorship W4322006781A5017766675 @default.
- W4322006781 hasAuthorship W4322006781A5027555087 @default.
- W4322006781 hasAuthorship W4322006781A5031979930 @default.
- W4322006781 hasAuthorship W4322006781A5036740480 @default.
- W4322006781 hasAuthorship W4322006781A5044986403 @default.
- W4322006781 hasAuthorship W4322006781A5087307109 @default.
- W4322006781 hasAuthorship W4322006781A5087437332 @default.
- W4322006781 hasAuthorship W4322006781A5090625258 @default.
- W4322006781 hasConcept C105795698 @default.
- W4322006781 hasConcept C118518473 @default.
- W4322006781 hasConcept C119857082 @default.
- W4322006781 hasConcept C13558536 @default.
- W4322006781 hasConcept C142724271 @default.
- W4322006781 hasConcept C166957645 @default.
- W4322006781 hasConcept C169258074 @default.
- W4322006781 hasConcept C205649164 @default.
- W4322006781 hasConcept C2776133958 @default.
- W4322006781 hasConcept C33923547 @default.
- W4322006781 hasConcept C39432304 @default.
- W4322006781 hasConcept C41008148 @default.
- W4322006781 hasConcept C54286561 @default.
- W4322006781 hasConcept C71924100 @default.
- W4322006781 hasConcept C83546350 @default.
- W4322006781 hasConceptScore W4322006781C105795698 @default.
- W4322006781 hasConceptScore W4322006781C118518473 @default.
- W4322006781 hasConceptScore W4322006781C119857082 @default.
- W4322006781 hasConceptScore W4322006781C13558536 @default.
- W4322006781 hasConceptScore W4322006781C142724271 @default.
- W4322006781 hasConceptScore W4322006781C166957645 @default.
- W4322006781 hasConceptScore W4322006781C169258074 @default.
- W4322006781 hasConceptScore W4322006781C205649164 @default.
- W4322006781 hasConceptScore W4322006781C2776133958 @default.
- W4322006781 hasConceptScore W4322006781C33923547 @default.
- W4322006781 hasConceptScore W4322006781C39432304 @default.
- W4322006781 hasConceptScore W4322006781C41008148 @default.
- W4322006781 hasConceptScore W4322006781C54286561 @default.
- W4322006781 hasConceptScore W4322006781C71924100 @default.
- W4322006781 hasConceptScore W4322006781C83546350 @default.
- W4322006781 hasLocation W43220067811 @default.
- W4322006781 hasOpenAccess W4322006781 @default.
- W4322006781 hasPrimaryLocation W43220067811 @default.
- W4322006781 hasRelatedWork W1603730487 @default.
- W4322006781 hasRelatedWork W2037636923 @default.
- W4322006781 hasRelatedWork W2067586777 @default.
- W4322006781 hasRelatedWork W2165323724 @default.
- W4322006781 hasRelatedWork W2256039336 @default.
- W4322006781 hasRelatedWork W2358976417 @default.
- W4322006781 hasRelatedWork W2891802969 @default.
- W4322006781 hasRelatedWork W2992389414 @default.
- W4322006781 hasRelatedWork W3202118333 @default.
- W4322006781 hasRelatedWork W4285311921 @default.
- W4322006781 isParatext "false" @default.
- W4322006781 isRetracted "false" @default.
- W4322006781 workType "article" @default.