Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322006783> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4322006783 abstract "Satellite imagery provides a unique reference for estimating flood inundation extent that can help characterize flood magnitudes and impacts in support of scientific studies and for operational disaster response. All imagery modalities (multispectral/hyperspectral, panchromatic, synthetic aperture radar (SAR)) suffer from factors that confound accurate spatial representation of flood extent, whether using traditional image classification methods or machine learning-based approaches. Clouds, cloud shadows, tree canopy, tall vegetation, and other factors either obscure the water surface or confuse the classifiers. These can yield results that vary widely when compared to actual flood extents, whether referencing observed data like high-water marks or high-quality hydrodynamic models. In addition, opportunities for imagery collection often do not coincide with maximum flood extent due to satellite access windows, cloud cover impacting optical sensors, or a combination of both. That said, the proliferation of existing and planned commercial and civil sensors across all modalities presents increasing opportunities for timely collection.In recent years, the quality of terrain data at regional, country, continental, and global scales has continued to rapidly improve. The data include WorldDEM, NASADEM, MERIT DEM, EarthDEM, among others, and many regional to country-scale lidar-derived datasets. The availability of this high-quality data allows for new methods that integrate terrain data with remotely sensed imagery data, to yield accurate and timely representations of flood extent in new ways to support both scientific investigations and disaster response.However, few methods have been developed that integrate satellite and/or aerial imagery data with terrain data to improve imagery-derived flood products. This paper will present new methods, based on the novel Flood Inundation Surface Topology (FIST) Model, for integration of terrain data with the limited data derived from imagery to provide a more accurate representation of maximum flood extents that overcomes many of the aforementioned limitations of using imagery alone. In addition, The FIST model also produces flood depth grids at the resolution of the native terrain data, which represents a major advance in imagery-derived flood products. We present the fundamental directed graph algorithm that is unique to the FIST model; the data architectures that support a range of applications; and case studies for the use of active flood and post-peak flood imagery to generate inundation extents and depth grids for peak-flood conditions." @default.
- W4322006783 created "2023-02-26" @default.
- W4322006783 creator A5035090118 @default.
- W4322006783 creator A5056552672 @default.
- W4322006783 date "2023-05-15" @default.
- W4322006783 modified "2023-09-27" @default.
- W4322006783 title "Imagery and Terrain Data Fusion with the Flood Inundation Surface Topology (FIST) Model" @default.
- W4322006783 doi "https://doi.org/10.5194/egusphere-egu23-7672" @default.
- W4322006783 hasPublicationYear "2023" @default.
- W4322006783 type Work @default.
- W4322006783 citedByCount "0" @default.
- W4322006783 crossrefType "posted-content" @default.
- W4322006783 hasAuthorship W4322006783A5035090118 @default.
- W4322006783 hasAuthorship W4322006783A5056552672 @default.
- W4322006783 hasConcept C107445234 @default.
- W4322006783 hasConcept C127313418 @default.
- W4322006783 hasConcept C161840515 @default.
- W4322006783 hasConcept C166957645 @default.
- W4322006783 hasConcept C173163844 @default.
- W4322006783 hasConcept C186295008 @default.
- W4322006783 hasConcept C187320778 @default.
- W4322006783 hasConcept C205649164 @default.
- W4322006783 hasConcept C2778102629 @default.
- W4322006783 hasConcept C39432304 @default.
- W4322006783 hasConcept C41008148 @default.
- W4322006783 hasConcept C51399673 @default.
- W4322006783 hasConcept C58640448 @default.
- W4322006783 hasConcept C62649853 @default.
- W4322006783 hasConcept C74256435 @default.
- W4322006783 hasConcept C87360688 @default.
- W4322006783 hasConcept C99695388 @default.
- W4322006783 hasConceptScore W4322006783C107445234 @default.
- W4322006783 hasConceptScore W4322006783C127313418 @default.
- W4322006783 hasConceptScore W4322006783C161840515 @default.
- W4322006783 hasConceptScore W4322006783C166957645 @default.
- W4322006783 hasConceptScore W4322006783C173163844 @default.
- W4322006783 hasConceptScore W4322006783C186295008 @default.
- W4322006783 hasConceptScore W4322006783C187320778 @default.
- W4322006783 hasConceptScore W4322006783C205649164 @default.
- W4322006783 hasConceptScore W4322006783C2778102629 @default.
- W4322006783 hasConceptScore W4322006783C39432304 @default.
- W4322006783 hasConceptScore W4322006783C41008148 @default.
- W4322006783 hasConceptScore W4322006783C51399673 @default.
- W4322006783 hasConceptScore W4322006783C58640448 @default.
- W4322006783 hasConceptScore W4322006783C62649853 @default.
- W4322006783 hasConceptScore W4322006783C74256435 @default.
- W4322006783 hasConceptScore W4322006783C87360688 @default.
- W4322006783 hasConceptScore W4322006783C99695388 @default.
- W4322006783 hasLocation W43220067831 @default.
- W4322006783 hasOpenAccess W4322006783 @default.
- W4322006783 hasPrimaryLocation W43220067831 @default.
- W4322006783 hasRelatedWork W2044185909 @default.
- W4322006783 hasRelatedWork W2048809941 @default.
- W4322006783 hasRelatedWork W2057962381 @default.
- W4322006783 hasRelatedWork W2146964278 @default.
- W4322006783 hasRelatedWork W2182578758 @default.
- W4322006783 hasRelatedWork W2336666075 @default.
- W4322006783 hasRelatedWork W2478271901 @default.
- W4322006783 hasRelatedWork W4243042251 @default.
- W4322006783 hasRelatedWork W4297533962 @default.
- W4322006783 hasRelatedWork W48989663 @default.
- W4322006783 isParatext "false" @default.
- W4322006783 isRetracted "false" @default.
- W4322006783 workType "article" @default.