Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322007039> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4322007039 abstract "This contribution deals with the spatial and temporal scales involved in the processes that control evapotranspiration (ET) and confront these with the merits and limitations of various observation and modelling techniques. We make a strong case for integrated approaches to further develop our understanding of evapotranspiration.The most challenging, but at the same time most relevant conditions to accurately represent ET are found in semi-arid regions, specifically complex terrains with strong thermal contrasts between dry and wet (irrigated) areas. We will present three cases with different objectives in terms of processes that control ET and the methods used to study them. First is the LIAISE campaign, where we will focus on how to describe ET depending on the spatial scale considered ranging from regional to landscape to local scale. Second is the E-DATA campaign, where ET is controlled by a thermally driven and topographically enhanced regional flow that alters the turbulent mixing and the structure of the atmospheric boundary layer. Third deals with a machine learning approach to determine ET based on standard weather station data.LIAISE took place during the summer of 2021 in the Pla d’Urgell region of the Ebro River Valley in Catalonia, Spain. The surface was homogeneous at the field scale (e.g. fields of alfalfa). However, the surface was heterogeneous at the regional scale (~10-100km) because of the spatial distribution of irrigated crops and dry natural vegetation. We examined the impact of the boundary layer on surface fluxes at two of the LIAISE sites: one in the irrigated, crop-covered area and one in the dry, naturally-vegetated area.  We use an atmospheric mixed-layer column model that is heavily constrained by the surface and boundary layer observations from the LIAISE experiment.The E-DATA experiment took place during November 2018 and focussed on quantifying the processes that drive ET in a shallow lake surrounded by extremely dry conditions in a salt flat (Salar del Huasco) of the Chilean Atacama desert. We use the WRF model at 100-m resolution to represent the local processes as well as the heterogeneity and regional transport to understand the evaporation and ABL dynamics over the water.The machine learning study explores whether a physics-informed machine learning  approach can be used to improve the estimated evapotranspiration for irrigated fields located in a desert environment, without arbitrary tuning after training  and only using readily available data (standard meteorological data and satellite derived vegetation indices). We focus on an irrigated pecan orchard in Northwest Mexico. Multi-year eddy-covariance ET estimates are used to train and validate the model." @default.
- W4322007039 created "2023-02-26" @default.
- W4322007039 creator A5013037296 @default.
- W4322007039 creator A5016936627 @default.
- W4322007039 creator A5038585252 @default.
- W4322007039 creator A5073374421 @default.
- W4322007039 creator A5078205016 @default.
- W4322007039 creator A5086887879 @default.
- W4322007039 date "2023-05-15" @default.
- W4322007039 modified "2023-09-29" @default.
- W4322007039 title "Measuring and Modelling Evapotranspiration over Complex Terrain" @default.
- W4322007039 doi "https://doi.org/10.5194/egusphere-egu23-7847" @default.
- W4322007039 hasPublicationYear "2023" @default.
- W4322007039 type Work @default.
- W4322007039 citedByCount "0" @default.
- W4322007039 crossrefType "posted-content" @default.
- W4322007039 hasAuthorship W4322007039A5013037296 @default.
- W4322007039 hasAuthorship W4322007039A5016936627 @default.
- W4322007039 hasAuthorship W4322007039A5038585252 @default.
- W4322007039 hasAuthorship W4322007039A5073374421 @default.
- W4322007039 hasAuthorship W4322007039A5078205016 @default.
- W4322007039 hasAuthorship W4322007039A5086887879 @default.
- W4322007039 hasConcept C111603439 @default.
- W4322007039 hasConcept C114614502 @default.
- W4322007039 hasConcept C121332964 @default.
- W4322007039 hasConcept C127313418 @default.
- W4322007039 hasConcept C142724271 @default.
- W4322007039 hasConcept C150772632 @default.
- W4322007039 hasConcept C151730666 @default.
- W4322007039 hasConcept C161840515 @default.
- W4322007039 hasConcept C176783924 @default.
- W4322007039 hasConcept C18903297 @default.
- W4322007039 hasConcept C202444582 @default.
- W4322007039 hasConcept C205649164 @default.
- W4322007039 hasConcept C2776133958 @default.
- W4322007039 hasConcept C2777016058 @default.
- W4322007039 hasConcept C2778755073 @default.
- W4322007039 hasConcept C33923547 @default.
- W4322007039 hasConcept C39432304 @default.
- W4322007039 hasConcept C58640448 @default.
- W4322007039 hasConcept C62649853 @default.
- W4322007039 hasConcept C66882249 @default.
- W4322007039 hasConcept C71924100 @default.
- W4322007039 hasConcept C86803240 @default.
- W4322007039 hasConcept C9652623 @default.
- W4322007039 hasConcept C97355855 @default.
- W4322007039 hasConceptScore W4322007039C111603439 @default.
- W4322007039 hasConceptScore W4322007039C114614502 @default.
- W4322007039 hasConceptScore W4322007039C121332964 @default.
- W4322007039 hasConceptScore W4322007039C127313418 @default.
- W4322007039 hasConceptScore W4322007039C142724271 @default.
- W4322007039 hasConceptScore W4322007039C150772632 @default.
- W4322007039 hasConceptScore W4322007039C151730666 @default.
- W4322007039 hasConceptScore W4322007039C161840515 @default.
- W4322007039 hasConceptScore W4322007039C176783924 @default.
- W4322007039 hasConceptScore W4322007039C18903297 @default.
- W4322007039 hasConceptScore W4322007039C202444582 @default.
- W4322007039 hasConceptScore W4322007039C205649164 @default.
- W4322007039 hasConceptScore W4322007039C2776133958 @default.
- W4322007039 hasConceptScore W4322007039C2777016058 @default.
- W4322007039 hasConceptScore W4322007039C2778755073 @default.
- W4322007039 hasConceptScore W4322007039C33923547 @default.
- W4322007039 hasConceptScore W4322007039C39432304 @default.
- W4322007039 hasConceptScore W4322007039C58640448 @default.
- W4322007039 hasConceptScore W4322007039C62649853 @default.
- W4322007039 hasConceptScore W4322007039C66882249 @default.
- W4322007039 hasConceptScore W4322007039C71924100 @default.
- W4322007039 hasConceptScore W4322007039C86803240 @default.
- W4322007039 hasConceptScore W4322007039C9652623 @default.
- W4322007039 hasConceptScore W4322007039C97355855 @default.
- W4322007039 hasLocation W43220070391 @default.
- W4322007039 hasOpenAccess W4322007039 @default.
- W4322007039 hasPrimaryLocation W43220070391 @default.
- W4322007039 hasRelatedWork W2377829932 @default.
- W4322007039 hasRelatedWork W2391161561 @default.
- W4322007039 hasRelatedWork W2589665973 @default.
- W4322007039 hasRelatedWork W2802475674 @default.
- W4322007039 hasRelatedWork W2913285166 @default.
- W4322007039 hasRelatedWork W2998993830 @default.
- W4322007039 hasRelatedWork W4301968561 @default.
- W4322007039 hasRelatedWork W4307716598 @default.
- W4322007039 hasRelatedWork W2005900858 @default.
- W4322007039 hasRelatedWork W4214970667 @default.
- W4322007039 isParatext "false" @default.
- W4322007039 isRetracted "false" @default.
- W4322007039 workType "article" @default.