Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322007519> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4322007519 abstract "Accurate measurement of soil moisture (SM) at high spatiotemporal resolutions is one of the critical challenges of site-specific precision agriculture. Traditionally SM is measured manually or using in-situ SM probes scattered in the field. Although these observations are generally accurate and reliable up to the sensitivity level of the SM probe, it is very time-consuming, costly, and inefficient for large heterogeneous fields to acquire high-resolution SM measurements. Over the last several decades, microwave remote sensing approaches have become popular for measuring spatially distributed SM. Several space-borne missions, such as SMAP and SMOS, have been launched to provide surface SM measurements globally. Although all current satellite missions and their SM products are critical for many large-scale research and studies, their coarse spatial resolution (about 40km) makes it impractical for precision agriculture applications. To enable subfield scale soil moisture mapping in near real-time, our team has recently developed an unmanned aircraft systems ( UAS) -based multi-sensory system with Global Navigation Satellite System (GNSS) reflectometry (GNSS-R), a multispectral camera, and a LIDAR. A down-facing GNSS antenna with a ground plane blocks the direct GNSS signals, and it collects reflected carrier-to-noise density ratio (C/N0) measurements from multiple specular points on the ground for each visible GNSS satellite. The multispectral camera provides spectral images in blue, green, red, red edge, and near-infrared (NIR) bands. The LIDAR offers a 3D representation of the surface and vegetation. Such a comprehensive dataset has been collected in a field under different management practices for the last three years. The study field was organized with a split-plot arrangement and was planted with corn and cotton as the main crops. We have performed 581 flights over the study field and collected more than 4 TB of data, including visual and multispectral images and LIDAR point clouds. More than 2.5 million L-band reflection samples have been collected over the field. In addition, in-situ SM and intense manual SM observations over the field have been collected as ground truth information. Observed GNSS-R data is dependent not only on the SM but also on the vegetation, surface roughness, topography, soil texture, GNSS satellites' positions, transmitter characteristics, receiver orientation, and flight parameters through a combination of linear and nonlinear relations. To learn such a relationship, we developed a machine learning (ML) model using multiple sensory input features for high-resolution, low-cost, and easily accessible SM mapping for precision agriculture. In this study, we will present the multi-year field campaigns and the development of the ML framework with convolutional and fully connected neural network layers for SM mapping that can utilize multiple imageries jointly with other physical and microwave data and calculate features relevant to SM. During the model development, site and time-independent cross-validation methods are used for better model generalization and performance evaluation." @default.
- W4322007519 created "2023-02-26" @default.
- W4322007519 creator A5034104279 @default.
- W4322007519 creator A5065532859 @default.
- W4322007519 creator A5075070489 @default.
- W4322007519 creator A5077740295 @default.
- W4322007519 date "2023-05-15" @default.
- W4322007519 modified "2023-09-29" @default.
- W4322007519 title "Enabling subfield scale soil moisture mapping in near real-time by recycling L-band GNSS signals from drones" @default.
- W4322007519 doi "https://doi.org/10.5194/egusphere-egu23-10991" @default.
- W4322007519 hasPublicationYear "2023" @default.
- W4322007519 type Work @default.
- W4322007519 citedByCount "0" @default.
- W4322007519 crossrefType "posted-content" @default.
- W4322007519 hasAuthorship W4322007519A5034104279 @default.
- W4322007519 hasAuthorship W4322007519A5065532859 @default.
- W4322007519 hasAuthorship W4322007519A5075070489 @default.
- W4322007519 hasAuthorship W4322007519A5077740295 @default.
- W4322007519 hasConcept C103824480 @default.
- W4322007519 hasConcept C118518473 @default.
- W4322007519 hasConcept C119666444 @default.
- W4322007519 hasConcept C120217122 @default.
- W4322007519 hasConcept C120665830 @default.
- W4322007519 hasConcept C121332964 @default.
- W4322007519 hasConcept C1276947 @default.
- W4322007519 hasConcept C14279187 @default.
- W4322007519 hasConcept C166957645 @default.
- W4322007519 hasConcept C173163844 @default.
- W4322007519 hasConcept C19269812 @default.
- W4322007519 hasConcept C205649164 @default.
- W4322007519 hasConcept C2778027091 @default.
- W4322007519 hasConcept C2778925768 @default.
- W4322007519 hasConcept C31972630 @default.
- W4322007519 hasConcept C39432304 @default.
- W4322007519 hasConcept C41008148 @default.
- W4322007519 hasConcept C51399673 @default.
- W4322007519 hasConcept C60229501 @default.
- W4322007519 hasConcept C62649853 @default.
- W4322007519 hasConcept C76155785 @default.
- W4322007519 hasConceptScore W4322007519C103824480 @default.
- W4322007519 hasConceptScore W4322007519C118518473 @default.
- W4322007519 hasConceptScore W4322007519C119666444 @default.
- W4322007519 hasConceptScore W4322007519C120217122 @default.
- W4322007519 hasConceptScore W4322007519C120665830 @default.
- W4322007519 hasConceptScore W4322007519C121332964 @default.
- W4322007519 hasConceptScore W4322007519C1276947 @default.
- W4322007519 hasConceptScore W4322007519C14279187 @default.
- W4322007519 hasConceptScore W4322007519C166957645 @default.
- W4322007519 hasConceptScore W4322007519C173163844 @default.
- W4322007519 hasConceptScore W4322007519C19269812 @default.
- W4322007519 hasConceptScore W4322007519C205649164 @default.
- W4322007519 hasConceptScore W4322007519C2778027091 @default.
- W4322007519 hasConceptScore W4322007519C2778925768 @default.
- W4322007519 hasConceptScore W4322007519C31972630 @default.
- W4322007519 hasConceptScore W4322007519C39432304 @default.
- W4322007519 hasConceptScore W4322007519C41008148 @default.
- W4322007519 hasConceptScore W4322007519C51399673 @default.
- W4322007519 hasConceptScore W4322007519C60229501 @default.
- W4322007519 hasConceptScore W4322007519C62649853 @default.
- W4322007519 hasConceptScore W4322007519C76155785 @default.
- W4322007519 hasLocation W43220075191 @default.
- W4322007519 hasOpenAccess W4322007519 @default.
- W4322007519 hasPrimaryLocation W43220075191 @default.
- W4322007519 hasRelatedWork W1660767182 @default.
- W4322007519 hasRelatedWork W2036426401 @default.
- W4322007519 hasRelatedWork W2081396111 @default.
- W4322007519 hasRelatedWork W2089662372 @default.
- W4322007519 hasRelatedWork W2378995615 @default.
- W4322007519 hasRelatedWork W2900005864 @default.
- W4322007519 hasRelatedWork W2996242180 @default.
- W4322007519 hasRelatedWork W3029019038 @default.
- W4322007519 hasRelatedWork W3128751196 @default.
- W4322007519 hasRelatedWork W4322007519 @default.
- W4322007519 isParatext "false" @default.
- W4322007519 isRetracted "false" @default.
- W4322007519 workType "article" @default.