Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322009834> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4322009834 abstract "Parametric analysis of laboratory Acoustic Emission (AE) during rock deformation laboratory experiments has revealed periodic trends and precursory behaviour of the rupture source, as crack damage nucleates, it grows and coalesces into a fault zone. Due to the heterogeneity of rocks and the different effective pressures, finding a full prediction of rupture mechanisms is still an open goal.4x10cm cylindrical samples of Alzo granite were triaxially deformed at confining pressures of 5-40 MPa, while AE are recorded by an array of twelve 1MHz Piezo-Electric Transducers. AE are then post-processed to derive attributes and parameters. We aim to identify what are our most important parameters, and more interestingly, when they are most relevant for predicting when the rock will fail.Time Delay Neural Networks (TDNN) have shown promise in forecasting failure when using AE-derived parameters. We trained a TDNN with 5 key parameters: 1) AE event rate, i.e. the number of events obtained during the incremental deformation (strain); 2) AE amplitude, i.e. maximum amplitude of S-waves, 3) AE source mechanisms inferred by the source radiation patterns to categorize events and obtain source orientations of mixed-mode type mechanisms; 4) Seismic scattering, i.e. the ratio between the low frequency (LF, 50-500 kHz) and high frequency (HF, 500-1000 kHz) peak delay (PD) values for individual AE and 5) Bulk elastic S-wave velocity measured at intervals throughout the experiment along the ray-paths created by transmitters and receivers. As each parameter investigates a specific mechanical aspect, taken together they provide information on deformation, fracturing and the evolving state of the background medium as failure is approached. These timeseries are then classified by the TDNN as variations in stress and strain (target parameters).We are currently assessing the importance of individual parameters by omitting one at a time from the training routine. The more important the omitted parameter, the larger the misfit will be when comparing the network output and the target timeseries. The omission analysis determines what are the most important parameters to use when training a neural network to predict dynamic failure. Results are strongly dependent on the methods used to define the training parameters, but several trends are emerging. Event rate and amplitude differently influence predictions of stress and strain. Event rate appears relevant only in the early deformation phases, while amplitude seems much more significant during the coalescence/propagation phase. Seismic scattering and source mechanisms also show an early relevance, interpreted as due 1) to the breakup of low frequency surface waves as microcracks begin to coalesce and 2) bursts of tensile events in the enucleation phase and an increase at ~80% UCS, likely related to the crack propagation. Similarly, there is a clear pivot in the importance of seismic velocity during the early stage, but it emerges a progressive increase ~40% UCS whose origin is unclear. We are currently determining if these variations are directly related to the mechanics of the fault zone or are simply an artifact of the processing." @default.
- W4322009834 created "2023-02-26" @default.
- W4322009834 creator A5039885714 @default.
- W4322009834 creator A5067158071 @default.
- W4322009834 creator A5071979571 @default.
- W4322009834 creator A5080212283 @default.
- W4322009834 date "2023-05-15" @default.
- W4322009834 modified "2023-09-29" @default.
- W4322009834 title "Using AE based Machine Learning Approaches to Forecast Rupture during Rock Deformation Laboratory Experiments" @default.
- W4322009834 doi "https://doi.org/10.5194/egusphere-egu23-8188" @default.
- W4322009834 hasPublicationYear "2023" @default.
- W4322009834 type Work @default.
- W4322009834 citedByCount "0" @default.
- W4322009834 crossrefType "posted-content" @default.
- W4322009834 hasAuthorship W4322009834A5039885714 @default.
- W4322009834 hasAuthorship W4322009834A5067158071 @default.
- W4322009834 hasAuthorship W4322009834A5071979571 @default.
- W4322009834 hasAuthorship W4322009834A5080212283 @default.
- W4322009834 hasConcept C105795698 @default.
- W4322009834 hasConcept C111368507 @default.
- W4322009834 hasConcept C117251300 @default.
- W4322009834 hasConcept C120665830 @default.
- W4322009834 hasConcept C121332964 @default.
- W4322009834 hasConcept C127313418 @default.
- W4322009834 hasConcept C154945302 @default.
- W4322009834 hasConcept C165205528 @default.
- W4322009834 hasConcept C174598085 @default.
- W4322009834 hasConcept C180205008 @default.
- W4322009834 hasConcept C204366326 @default.
- W4322009834 hasConcept C24890656 @default.
- W4322009834 hasConcept C33923547 @default.
- W4322009834 hasConcept C41008148 @default.
- W4322009834 hasConcept C50644808 @default.
- W4322009834 hasConceptScore W4322009834C105795698 @default.
- W4322009834 hasConceptScore W4322009834C111368507 @default.
- W4322009834 hasConceptScore W4322009834C117251300 @default.
- W4322009834 hasConceptScore W4322009834C120665830 @default.
- W4322009834 hasConceptScore W4322009834C121332964 @default.
- W4322009834 hasConceptScore W4322009834C127313418 @default.
- W4322009834 hasConceptScore W4322009834C154945302 @default.
- W4322009834 hasConceptScore W4322009834C165205528 @default.
- W4322009834 hasConceptScore W4322009834C174598085 @default.
- W4322009834 hasConceptScore W4322009834C180205008 @default.
- W4322009834 hasConceptScore W4322009834C204366326 @default.
- W4322009834 hasConceptScore W4322009834C24890656 @default.
- W4322009834 hasConceptScore W4322009834C33923547 @default.
- W4322009834 hasConceptScore W4322009834C41008148 @default.
- W4322009834 hasConceptScore W4322009834C50644808 @default.
- W4322009834 hasLocation W43220098341 @default.
- W4322009834 hasOpenAccess W4322009834 @default.
- W4322009834 hasPrimaryLocation W43220098341 @default.
- W4322009834 hasRelatedWork W1968702681 @default.
- W4322009834 hasRelatedWork W1969245073 @default.
- W4322009834 hasRelatedWork W2000148468 @default.
- W4322009834 hasRelatedWork W2022035173 @default.
- W4322009834 hasRelatedWork W2031573214 @default.
- W4322009834 hasRelatedWork W2371527909 @default.
- W4322009834 hasRelatedWork W2772196783 @default.
- W4322009834 hasRelatedWork W3036915269 @default.
- W4322009834 hasRelatedWork W3109652668 @default.
- W4322009834 hasRelatedWork W3113596969 @default.
- W4322009834 isParatext "false" @default.
- W4322009834 isRetracted "false" @default.
- W4322009834 workType "article" @default.