Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322013003> ?p ?o ?g. }
- W4322013003 endingPage "120879" @default.
- W4322013003 startingPage "120879" @default.
- W4322013003 abstract "Coal mines are prone to fatal vulnerabilities due to improper airflow, a susceptible threat that leads to vitiating safety and human resources. Hence, continuous monitoring of the underground mine’s airflow is essential for detecting any calamities. Various artificial intelligent methods estimate the underground mines’ airflow (non-linear parameter). However, these methods fall into local minima and low convergence rates. This article proposed a novel algorithm that integrates an Adaptive Neural Fuzzy Interface System (ANFIS) and genetic algorithm (GA) to predict the energy consumption and airflow of the ventilation system for underground mines. A GA is studied to automatically search and configure network architecture to reduce the manual tuning effort required for optimal network architecture. Two predictive reference models (i.e., particle swarm optimisation (PSO) and Bayesian optimisation (BO)) are introduced for comparison to demonstrate the capability of GA in identifying the best hyper-parameters of ANFIS and ANN. To validate the proposed model, extensive experiment analysis and comparison with several baseline approaches in terms of the statistical parameters that include root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2). In terms of the performance metric employed, the experiment findings indicate that the proposed model gives superior results over the baseline models. Thus, the proposed work advances the mine ventilation and monitoring system technologies to enhance performance and reliability, improve health and safety, reduce energy and operational cost, and enhance mine productivity." @default.
- W4322013003 created "2023-02-26" @default.
- W4322013003 creator A5010634944 @default.
- W4322013003 creator A5028488633 @default.
- W4322013003 creator A5078464069 @default.
- W4322013003 date "2023-05-01" @default.
- W4322013003 modified "2023-09-26" @default.
- W4322013003 title "An adaptive neural fuzzy interface structure optimisation for prediction of energy consumption and airflow of a ventilation system" @default.
- W4322013003 cites W1983110499 @default.
- W4322013003 cites W1987910023 @default.
- W4322013003 cites W1989475308 @default.
- W4322013003 cites W1994249905 @default.
- W4322013003 cites W1995341919 @default.
- W4322013003 cites W2007539096 @default.
- W4322013003 cites W2017657413 @default.
- W4322013003 cites W2019207321 @default.
- W4322013003 cites W2036194260 @default.
- W4322013003 cites W2041701590 @default.
- W4322013003 cites W2044779926 @default.
- W4322013003 cites W2047995930 @default.
- W4322013003 cites W2049867362 @default.
- W4322013003 cites W2074550200 @default.
- W4322013003 cites W2082104542 @default.
- W4322013003 cites W2083974252 @default.
- W4322013003 cites W2089494870 @default.
- W4322013003 cites W2094176506 @default.
- W4322013003 cites W2163121678 @default.
- W4322013003 cites W2333481024 @default.
- W4322013003 cites W2579725890 @default.
- W4322013003 cites W2605107788 @default.
- W4322013003 cites W2608204247 @default.
- W4322013003 cites W2615467640 @default.
- W4322013003 cites W2718680943 @default.
- W4322013003 cites W2752684551 @default.
- W4322013003 cites W2754029504 @default.
- W4322013003 cites W2884704880 @default.
- W4322013003 cites W2885246201 @default.
- W4322013003 cites W2916200136 @default.
- W4322013003 cites W2918882650 @default.
- W4322013003 cites W2928408182 @default.
- W4322013003 cites W2947489409 @default.
- W4322013003 cites W2977791265 @default.
- W4322013003 cites W2983727864 @default.
- W4322013003 cites W3119461390 @default.
- W4322013003 cites W3151723181 @default.
- W4322013003 cites W3162438657 @default.
- W4322013003 cites W3178420124 @default.
- W4322013003 cites W4285370359 @default.
- W4322013003 doi "https://doi.org/10.1016/j.apenergy.2023.120879" @default.
- W4322013003 hasPublicationYear "2023" @default.
- W4322013003 type Work @default.
- W4322013003 citedByCount "2" @default.
- W4322013003 countsByYear W43220130032023 @default.
- W4322013003 crossrefType "journal-article" @default.
- W4322013003 hasAuthorship W4322013003A5010634944 @default.
- W4322013003 hasAuthorship W4322013003A5028488633 @default.
- W4322013003 hasAuthorship W4322013003A5078464069 @default.
- W4322013003 hasConcept C105795698 @default.
- W4322013003 hasConcept C11413529 @default.
- W4322013003 hasConcept C116067010 @default.
- W4322013003 hasConcept C119599485 @default.
- W4322013003 hasConcept C121332964 @default.
- W4322013003 hasConcept C127413603 @default.
- W4322013003 hasConcept C139945424 @default.
- W4322013003 hasConcept C153294291 @default.
- W4322013003 hasConcept C154945302 @default.
- W4322013003 hasConcept C186108316 @default.
- W4322013003 hasConcept C195975749 @default.
- W4322013003 hasConcept C200457457 @default.
- W4322013003 hasConcept C206145494 @default.
- W4322013003 hasConcept C2780165032 @default.
- W4322013003 hasConcept C33923547 @default.
- W4322013003 hasConcept C41008148 @default.
- W4322013003 hasConcept C44154836 @default.
- W4322013003 hasConcept C50644808 @default.
- W4322013003 hasConcept C58166 @default.
- W4322013003 hasConcept C78519656 @default.
- W4322013003 hasConcept C85617194 @default.
- W4322013003 hasConceptScore W4322013003C105795698 @default.
- W4322013003 hasConceptScore W4322013003C11413529 @default.
- W4322013003 hasConceptScore W4322013003C116067010 @default.
- W4322013003 hasConceptScore W4322013003C119599485 @default.
- W4322013003 hasConceptScore W4322013003C121332964 @default.
- W4322013003 hasConceptScore W4322013003C127413603 @default.
- W4322013003 hasConceptScore W4322013003C139945424 @default.
- W4322013003 hasConceptScore W4322013003C153294291 @default.
- W4322013003 hasConceptScore W4322013003C154945302 @default.
- W4322013003 hasConceptScore W4322013003C186108316 @default.
- W4322013003 hasConceptScore W4322013003C195975749 @default.
- W4322013003 hasConceptScore W4322013003C200457457 @default.
- W4322013003 hasConceptScore W4322013003C206145494 @default.
- W4322013003 hasConceptScore W4322013003C2780165032 @default.
- W4322013003 hasConceptScore W4322013003C33923547 @default.
- W4322013003 hasConceptScore W4322013003C41008148 @default.
- W4322013003 hasConceptScore W4322013003C44154836 @default.
- W4322013003 hasConceptScore W4322013003C50644808 @default.
- W4322013003 hasConceptScore W4322013003C58166 @default.
- W4322013003 hasConceptScore W4322013003C78519656 @default.