Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322020183> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4322020183 abstract "Sea surface temperature (SST) is a critical parameter in the global climate system and plays a vital role in many marine processes, including ocean circulation, evaporation, and the exchange of heat and moisture between the ocean and atmosphere. As such, understanding the variability of SST is important for a range of applications, including weather and climate prediction, ocean circulation modeling, and marine resource management.The dynamics of SST is the compound of multiple degrees of freedom that interact across a continuum of Spatio-temporal scales. A first-order approximation of such a system was initially introduced by Hasselmann. In his pioneering work, Hasselmann (1976) discussed the interest in using a two-scale stochastic model to represent the interactions between slow and fast variables of the global ocean, climate, and atmosphere system. In this paper, we examine the potential of machine learning techniques to derive relevant dynamical models of Sea Surface Temperature Anomaly (SSTA) data in the Mediterranean Sea. We focus on the seasonal modulation of the SSTA and aim to understand the factors that influence the temporal variability of SSTA extremes. Our analysis shows that the variability of the SSTA can indeed well be decomposed into slow and fast components. The dynamics of the slow variables are associated with the seasonal cycle, while the dynamics of the fast variables are linked to the SSTA response to rapid underlying processes such as the local wind variability. Based on these observations, we approximate the probability density function of the SSTA data using a stochastic differential equation parameterized by a neural network. In this model, the drift function represents the seasonal cycle and the diffusion function represents the envelope of the fast SSTA response. " @default.
- W4322020183 created "2023-02-26" @default.
- W4322020183 creator A5009759418 @default.
- W4322020183 creator A5030132191 @default.
- W4322020183 creator A5040663687 @default.
- W4322020183 creator A5073132582 @default.
- W4322020183 creator A5074205884 @default.
- W4322020183 date "2023-05-15" @default.
- W4322020183 modified "2023-09-30" @default.
- W4322020183 title "Analysis of marine heat waves using machine learning" @default.
- W4322020183 doi "https://doi.org/10.5194/egusphere-egu23-16936" @default.
- W4322020183 hasPublicationYear "2023" @default.
- W4322020183 type Work @default.
- W4322020183 citedByCount "0" @default.
- W4322020183 crossrefType "posted-content" @default.
- W4322020183 hasAuthorship W4322020183A5009759418 @default.
- W4322020183 hasAuthorship W4322020183A5030132191 @default.
- W4322020183 hasAuthorship W4322020183A5040663687 @default.
- W4322020183 hasAuthorship W4322020183A5073132582 @default.
- W4322020183 hasAuthorship W4322020183A5074205884 @default.
- W4322020183 hasConcept C121332964 @default.
- W4322020183 hasConcept C127313418 @default.
- W4322020183 hasConcept C12997251 @default.
- W4322020183 hasConcept C134097258 @default.
- W4322020183 hasConcept C153294291 @default.
- W4322020183 hasConcept C166957645 @default.
- W4322020183 hasConcept C187599188 @default.
- W4322020183 hasConcept C205649164 @default.
- W4322020183 hasConcept C26873012 @default.
- W4322020183 hasConcept C2779043415 @default.
- W4322020183 hasConcept C39432304 @default.
- W4322020183 hasConcept C4646841 @default.
- W4322020183 hasConcept C49204034 @default.
- W4322020183 hasConcept C7228185 @default.
- W4322020183 hasConceptScore W4322020183C121332964 @default.
- W4322020183 hasConceptScore W4322020183C127313418 @default.
- W4322020183 hasConceptScore W4322020183C12997251 @default.
- W4322020183 hasConceptScore W4322020183C134097258 @default.
- W4322020183 hasConceptScore W4322020183C153294291 @default.
- W4322020183 hasConceptScore W4322020183C166957645 @default.
- W4322020183 hasConceptScore W4322020183C187599188 @default.
- W4322020183 hasConceptScore W4322020183C205649164 @default.
- W4322020183 hasConceptScore W4322020183C26873012 @default.
- W4322020183 hasConceptScore W4322020183C2779043415 @default.
- W4322020183 hasConceptScore W4322020183C39432304 @default.
- W4322020183 hasConceptScore W4322020183C4646841 @default.
- W4322020183 hasConceptScore W4322020183C49204034 @default.
- W4322020183 hasConceptScore W4322020183C7228185 @default.
- W4322020183 hasLocation W43220201831 @default.
- W4322020183 hasOpenAccess W4322020183 @default.
- W4322020183 hasPrimaryLocation W43220201831 @default.
- W4322020183 hasRelatedWork W1978053292 @default.
- W4322020183 hasRelatedWork W2050408711 @default.
- W4322020183 hasRelatedWork W2095215352 @default.
- W4322020183 hasRelatedWork W2144892623 @default.
- W4322020183 hasRelatedWork W2171266266 @default.
- W4322020183 hasRelatedWork W2393873827 @default.
- W4322020183 hasRelatedWork W2538802555 @default.
- W4322020183 hasRelatedWork W2941318649 @default.
- W4322020183 hasRelatedWork W3129036212 @default.
- W4322020183 hasRelatedWork W2189053712 @default.
- W4322020183 isParatext "false" @default.
- W4322020183 isRetracted "false" @default.
- W4322020183 workType "article" @default.