Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322099566> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4322099566 abstract "The subseasonal prediction with a lead time of 10–30 days is the gap between weather (<10 days) and climate (>30 days) predictions. Improving the forecast skill of extreme weather events at the subseasonal range is crucial for risk management of disastrous events. In this study, three deep-learning (DL) models based on the methods of convolutional neural network and gate recurrent unit are constructed to predict the rainfall anomalies and associated extreme events in East China at the lead times of 1–6 pentads. All DL models show skillful prediction of the temporal variation of rainfall anomalies (in terms of temporal correlation coefficient skill) over most regions in East China beyond 4 pentads, outperforming the dynamical models from the China Meteorological Administration (CMA) and the European Centre for Medium Range Weather Forecasts (ECMWF). The spatial distribution of the rainfall anomalies is also better predicted by the DL models than the dynamical models; and the DL models show higher pattern correlation coefficients than the dynamical models at lead times of 3 to 6 pentads. The higher skill of DL models in predicting the rainfall anomalies will help to improve the accuracy of extreme-event predictions. The Heidke skill scores of the extreme rainfall event forecast performed by the DL models are also superior to those of the dynamical models at a lead time beyond about 4 pentads. Heat map analysis for the DL models shows that the predictability sources are mainly the large-scale factors modulating the East Asian monsoon rainfall." @default.
- W4322099566 created "2023-02-26" @default.
- W4322099566 creator A5026449732 @default.
- W4322099566 creator A5080182143 @default.
- W4322099566 date "2023-05-15" @default.
- W4322099566 modified "2023-10-16" @default.
- W4322099566 title "Skillful subseasonal prediction of rainfall and extreme events in East China based on deep learning" @default.
- W4322099566 doi "https://doi.org/10.5194/egusphere-egu23-17300" @default.
- W4322099566 hasPublicationYear "2023" @default.
- W4322099566 type Work @default.
- W4322099566 citedByCount "0" @default.
- W4322099566 crossrefType "posted-content" @default.
- W4322099566 hasAuthorship W4322099566A5026449732 @default.
- W4322099566 hasAuthorship W4322099566A5080182143 @default.
- W4322099566 hasConcept C105795698 @default.
- W4322099566 hasConcept C107054158 @default.
- W4322099566 hasConcept C114793014 @default.
- W4322099566 hasConcept C121332964 @default.
- W4322099566 hasConcept C127313418 @default.
- W4322099566 hasConcept C153294291 @default.
- W4322099566 hasConcept C159985019 @default.
- W4322099566 hasConcept C166957645 @default.
- W4322099566 hasConcept C170061395 @default.
- W4322099566 hasConcept C191935318 @default.
- W4322099566 hasConcept C192562407 @default.
- W4322099566 hasConcept C197640229 @default.
- W4322099566 hasConcept C204323151 @default.
- W4322099566 hasConcept C205649164 @default.
- W4322099566 hasConcept C2777093003 @default.
- W4322099566 hasConcept C2779662365 @default.
- W4322099566 hasConcept C33923547 @default.
- W4322099566 hasConcept C39432304 @default.
- W4322099566 hasConcept C49204034 @default.
- W4322099566 hasConcept C62520636 @default.
- W4322099566 hasConceptScore W4322099566C105795698 @default.
- W4322099566 hasConceptScore W4322099566C107054158 @default.
- W4322099566 hasConceptScore W4322099566C114793014 @default.
- W4322099566 hasConceptScore W4322099566C121332964 @default.
- W4322099566 hasConceptScore W4322099566C127313418 @default.
- W4322099566 hasConceptScore W4322099566C153294291 @default.
- W4322099566 hasConceptScore W4322099566C159985019 @default.
- W4322099566 hasConceptScore W4322099566C166957645 @default.
- W4322099566 hasConceptScore W4322099566C170061395 @default.
- W4322099566 hasConceptScore W4322099566C191935318 @default.
- W4322099566 hasConceptScore W4322099566C192562407 @default.
- W4322099566 hasConceptScore W4322099566C197640229 @default.
- W4322099566 hasConceptScore W4322099566C204323151 @default.
- W4322099566 hasConceptScore W4322099566C205649164 @default.
- W4322099566 hasConceptScore W4322099566C2777093003 @default.
- W4322099566 hasConceptScore W4322099566C2779662365 @default.
- W4322099566 hasConceptScore W4322099566C33923547 @default.
- W4322099566 hasConceptScore W4322099566C39432304 @default.
- W4322099566 hasConceptScore W4322099566C49204034 @default.
- W4322099566 hasConceptScore W4322099566C62520636 @default.
- W4322099566 hasLocation W43220995661 @default.
- W4322099566 hasOpenAccess W4322099566 @default.
- W4322099566 hasPrimaryLocation W43220995661 @default.
- W4322099566 hasRelatedWork W1991068190 @default.
- W4322099566 hasRelatedWork W2003357297 @default.
- W4322099566 hasRelatedWork W2071869496 @default.
- W4322099566 hasRelatedWork W2147876351 @default.
- W4322099566 hasRelatedWork W2731203953 @default.
- W4322099566 hasRelatedWork W2899787192 @default.
- W4322099566 hasRelatedWork W3105945763 @default.
- W4322099566 hasRelatedWork W4293555636 @default.
- W4322099566 hasRelatedWork W4310822961 @default.
- W4322099566 hasRelatedWork W4362576425 @default.
- W4322099566 isParatext "false" @default.
- W4322099566 isRetracted "false" @default.
- W4322099566 workType "article" @default.