Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322102192> ?p ?o ?g. }
- W4322102192 endingPage "102034" @default.
- W4322102192 startingPage "102034" @default.
- W4322102192 abstract "Wildfires often threaten natural and economic resources and human lives. Wildfire susceptibility assessments have become essential for efficient disaster management and increasing resilience. In this study, we assessed the forest fire susceptibility in Istanbul Province and Thrace Region, Türkiye using a well-known machine learning technique, Artificial Neural Networks (ANN). Benefiting from freely available Earth Observation datasets such as Sentinel-2 images, Tree Cover Density from European Union (EU) European Environment Agency (EEA) Copernicus Land Monitoring Service, Shuttle Radar Topography Mission (SRTM) data, etc., and a forest inventory with ignition locations recorded over a period of eight years, we utilized a total of 16 independent and one dependent variables. The variables can be categorized as anthropogenic, topographic, vegetation, and hydrological factors. A ratio of 1:2 was preferred for the fire/non-fire location samples. The results show that the ANN exhibited high prediction performance with Area Under the Receiver Operating Characteristic Curve (AUC) value and F-1 score of 0.94 and 0.80, respectively. Based on feature importance analyses, we found that a human-related factor, proximity to forest roads, was the most predictive input variable. The ANN model trained with openly available data (i.e., without forest database) also yielded a high F-1 score, but produced maps with fewer details. Our results confirm that data-driven machine learning methods are promising for regional forest fire susceptibility assessments and can be extended further for other regions by deriving similar parameters from freely available Earth Observation datasets." @default.
- W4322102192 created "2023-02-26" @default.
- W4322102192 creator A5005404030 @default.
- W4322102192 creator A5064881528 @default.
- W4322102192 creator A5084359132 @default.
- W4322102192 date "2023-07-01" @default.
- W4322102192 modified "2023-10-01" @default.
- W4322102192 title "Artificial neural networks for assessing forest fire susceptibility in Türkiye" @default.
- W4322102192 cites W1584308190 @default.
- W4322102192 cites W1964647807 @default.
- W4322102192 cites W1984661559 @default.
- W4322102192 cites W2010150056 @default.
- W4322102192 cites W2014740640 @default.
- W4322102192 cites W2049366165 @default.
- W4322102192 cites W2053997187 @default.
- W4322102192 cites W2085190469 @default.
- W4322102192 cites W2085696766 @default.
- W4322102192 cites W2089922300 @default.
- W4322102192 cites W2103219856 @default.
- W4322102192 cites W2106779184 @default.
- W4322102192 cites W2155653793 @default.
- W4322102192 cites W2168894097 @default.
- W4322102192 cites W2225976211 @default.
- W4322102192 cites W2275605338 @default.
- W4322102192 cites W2334806815 @default.
- W4322102192 cites W2557002900 @default.
- W4322102192 cites W2608010111 @default.
- W4322102192 cites W2633478868 @default.
- W4322102192 cites W2778978672 @default.
- W4322102192 cites W2782182518 @default.
- W4322102192 cites W2789262548 @default.
- W4322102192 cites W2789751949 @default.
- W4322102192 cites W2807698901 @default.
- W4322102192 cites W2907066318 @default.
- W4322102192 cites W2913649977 @default.
- W4322102192 cites W2919115771 @default.
- W4322102192 cites W2922202880 @default.
- W4322102192 cites W2973710071 @default.
- W4322102192 cites W2989106197 @default.
- W4322102192 cites W3004099475 @default.
- W4322102192 cites W3022979107 @default.
- W4322102192 cites W3047019821 @default.
- W4322102192 cites W3091142866 @default.
- W4322102192 cites W3098308849 @default.
- W4322102192 cites W3099079911 @default.
- W4322102192 cites W3102380346 @default.
- W4322102192 cites W3107705108 @default.
- W4322102192 cites W3158850270 @default.
- W4322102192 cites W3166182933 @default.
- W4322102192 cites W3196247333 @default.
- W4322102192 cites W3199090101 @default.
- W4322102192 cites W3203068818 @default.
- W4322102192 cites W3203412232 @default.
- W4322102192 cites W4205320045 @default.
- W4322102192 cites W4210666798 @default.
- W4322102192 cites W4212977212 @default.
- W4322102192 cites W4224272961 @default.
- W4322102192 cites W4290025789 @default.
- W4322102192 cites W790676990 @default.
- W4322102192 doi "https://doi.org/10.1016/j.ecoinf.2023.102034" @default.
- W4322102192 hasPublicationYear "2023" @default.
- W4322102192 type Work @default.
- W4322102192 citedByCount "5" @default.
- W4322102192 countsByYear W43221021922023 @default.
- W4322102192 crossrefType "journal-article" @default.
- W4322102192 hasAuthorship W4322102192A5005404030 @default.
- W4322102192 hasAuthorship W4322102192A5064881528 @default.
- W4322102192 hasAuthorship W4322102192A5084359132 @default.
- W4322102192 hasConcept C100970517 @default.
- W4322102192 hasConcept C105639569 @default.
- W4322102192 hasConcept C107826830 @default.
- W4322102192 hasConcept C119857082 @default.
- W4322102192 hasConcept C142724271 @default.
- W4322102192 hasConcept C144133560 @default.
- W4322102192 hasConcept C169258074 @default.
- W4322102192 hasConcept C18903297 @default.
- W4322102192 hasConcept C205649164 @default.
- W4322102192 hasConcept C2776133958 @default.
- W4322102192 hasConcept C2780648208 @default.
- W4322102192 hasConcept C2910001868 @default.
- W4322102192 hasConcept C39432304 @default.
- W4322102192 hasConcept C41008148 @default.
- W4322102192 hasConcept C4792198 @default.
- W4322102192 hasConcept C50644808 @default.
- W4322102192 hasConcept C58640448 @default.
- W4322102192 hasConcept C62649853 @default.
- W4322102192 hasConcept C71924100 @default.
- W4322102192 hasConcept C86803240 @default.
- W4322102192 hasConceptScore W4322102192C100970517 @default.
- W4322102192 hasConceptScore W4322102192C105639569 @default.
- W4322102192 hasConceptScore W4322102192C107826830 @default.
- W4322102192 hasConceptScore W4322102192C119857082 @default.
- W4322102192 hasConceptScore W4322102192C142724271 @default.
- W4322102192 hasConceptScore W4322102192C144133560 @default.
- W4322102192 hasConceptScore W4322102192C169258074 @default.
- W4322102192 hasConceptScore W4322102192C18903297 @default.
- W4322102192 hasConceptScore W4322102192C205649164 @default.
- W4322102192 hasConceptScore W4322102192C2776133958 @default.