Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322124294> ?p ?o ?g. }
- W4322124294 endingPage "127836" @default.
- W4322124294 startingPage "127836" @default.
- W4322124294 abstract "In this study, a new estimation method for the kinetic parameters in a distributed activation energy model (DAEM) was designed and developed. In the proposed method, the conversion estimation by the DAEM is regarded as a feedforward computation of a three-layer neural network, and the kinetic parameters of the DAEM are estimated by optimization of the neural network. The proposed method does not require an a priori assumption of the kinetic parameters or mechanism of a parallel reaction system. First, we created reaction data using numerical simulations, and a kinetic analysis using the neural network was performed. The neural network predicted conversion X very accurately; however, reactions with low contributions to the parallel reaction system also appeared. Next, we carried out a kinetic analysis using the neural network with the lower limit on the contribution of the ith reaction Vi*/V*. The lower limit on Vi*/V* did not influence the prediction accuracy of X and had a significant effect on reducing the reactions with low Vi*/V* and the estimation accuracies of the kinetic parameters in the DAEM. The optimal value of the lower limit on Vi*/V* was determined to be 1.0×10−5–1.0×10−4 when using the neural network with 64 hidden layer nodes. Moreover, the prediction accuracy of the proposed method was compared with those of conventional methods — the single-Gaussian method (1-DAEM), double-Gaussian method (2-DAEM), and Miura and Maki method. The kinetic parameters estimated using the proposed method were closer to the true values than those obtained using conventional methods. Moreover, the X value predicted by the proposed method was more accurate than that predicted by conventional methods. The influence of approximation on training data creation was also examined. The estimation accuracy of the neural network was still high but slightly deteriorated when the neural network was optimized using the reaction data created without the approximation." @default.
- W4322124294 created "2023-02-26" @default.
- W4322124294 creator A5016852021 @default.
- W4322124294 creator A5026158074 @default.
- W4322124294 creator A5036972925 @default.
- W4322124294 creator A5067409542 @default.
- W4322124294 creator A5081984367 @default.
- W4322124294 date "2023-07-01" @default.
- W4322124294 modified "2023-09-26" @default.
- W4322124294 title "Neural network estimation of kinetic parameters in distributed activation energy model (DAEM) without a priori assumptions for parallel reaction system" @default.
- W4322124294 cites W1973381749 @default.
- W4322124294 cites W1981764371 @default.
- W4322124294 cites W1987251760 @default.
- W4322124294 cites W2000330305 @default.
- W4322124294 cites W2009093385 @default.
- W4322124294 cites W2017263692 @default.
- W4322124294 cites W2019425143 @default.
- W4322124294 cites W2019697971 @default.
- W4322124294 cites W2021510023 @default.
- W4322124294 cites W2024081693 @default.
- W4322124294 cites W2024847417 @default.
- W4322124294 cites W2029842684 @default.
- W4322124294 cites W2031485303 @default.
- W4322124294 cites W2031879798 @default.
- W4322124294 cites W2032458990 @default.
- W4322124294 cites W2041862353 @default.
- W4322124294 cites W2046718414 @default.
- W4322124294 cites W2058596534 @default.
- W4322124294 cites W2059161112 @default.
- W4322124294 cites W2062196979 @default.
- W4322124294 cites W2066066804 @default.
- W4322124294 cites W2076231474 @default.
- W4322124294 cites W2087771825 @default.
- W4322124294 cites W2090573029 @default.
- W4322124294 cites W2090593940 @default.
- W4322124294 cites W2091654061 @default.
- W4322124294 cites W2151389531 @default.
- W4322124294 cites W2167195867 @default.
- W4322124294 cites W2318721791 @default.
- W4322124294 cites W2321099442 @default.
- W4322124294 cites W2528885743 @default.
- W4322124294 cites W2731900166 @default.
- W4322124294 cites W2736419365 @default.
- W4322124294 cites W2768243714 @default.
- W4322124294 cites W2792675471 @default.
- W4322124294 cites W2904348819 @default.
- W4322124294 cites W2916413210 @default.
- W4322124294 cites W2945481451 @default.
- W4322124294 cites W2951616608 @default.
- W4322124294 cites W2951697025 @default.
- W4322124294 cites W2953876132 @default.
- W4322124294 cites W2975558134 @default.
- W4322124294 cites W3004442222 @default.
- W4322124294 cites W3038202720 @default.
- W4322124294 cites W3103145119 @default.
- W4322124294 cites W3118676270 @default.
- W4322124294 cites W3132117132 @default.
- W4322124294 cites W4281669258 @default.
- W4322124294 cites W4310068415 @default.
- W4322124294 doi "https://doi.org/10.1016/j.fuel.2023.127836" @default.
- W4322124294 hasPublicationYear "2023" @default.
- W4322124294 type Work @default.
- W4322124294 citedByCount "1" @default.
- W4322124294 countsByYear W43221242942023 @default.
- W4322124294 crossrefType "journal-article" @default.
- W4322124294 hasAuthorship W4322124294A5016852021 @default.
- W4322124294 hasAuthorship W4322124294A5026158074 @default.
- W4322124294 hasAuthorship W4322124294A5036972925 @default.
- W4322124294 hasAuthorship W4322124294A5067409542 @default.
- W4322124294 hasAuthorship W4322124294A5081984367 @default.
- W4322124294 hasConcept C111472728 @default.
- W4322124294 hasConcept C11413529 @default.
- W4322124294 hasConcept C121332964 @default.
- W4322124294 hasConcept C134306372 @default.
- W4322124294 hasConcept C135889238 @default.
- W4322124294 hasConcept C138885662 @default.
- W4322124294 hasConcept C147597530 @default.
- W4322124294 hasConcept C147789679 @default.
- W4322124294 hasConcept C151201525 @default.
- W4322124294 hasConcept C154945302 @default.
- W4322124294 hasConcept C163716315 @default.
- W4322124294 hasConcept C185592680 @default.
- W4322124294 hasConcept C186060115 @default.
- W4322124294 hasConcept C28826006 @default.
- W4322124294 hasConcept C33923547 @default.
- W4322124294 hasConcept C41008148 @default.
- W4322124294 hasConcept C45374587 @default.
- W4322124294 hasConcept C47702885 @default.
- W4322124294 hasConcept C50644808 @default.
- W4322124294 hasConcept C62520636 @default.
- W4322124294 hasConcept C75553542 @default.
- W4322124294 hasConcept C86803240 @default.
- W4322124294 hasConcept C95121573 @default.
- W4322124294 hasConcept C97355855 @default.
- W4322124294 hasConceptScore W4322124294C111472728 @default.
- W4322124294 hasConceptScore W4322124294C11413529 @default.
- W4322124294 hasConceptScore W4322124294C121332964 @default.
- W4322124294 hasConceptScore W4322124294C134306372 @default.