Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322152858> ?p ?o ?g. }
- W4322152858 endingPage "695" @default.
- W4322152858 startingPage "676" @default.
- W4322152858 abstract "Upper limb movement classification, which maps input signals to the target activities, is a key building block in the control of rehabilitative robotics. Classifiers are trained for the rehabilitative system to comprehend the desires of the patient whose upper limbs do not function properly. Electromyography (EMG) signals and Electroencephalography (EEG) signals are used widely for upper limb movement classification. By analysing the classification results of the real-time EEG and EMG signals, the system can understand the intention of the user and predict the events that one would like to carry out. Accordingly, it will provide external help to the user. However, the noise in the real-time EEG and EMG data collection process contaminates the effectiveness of the data, which undermines classification performance. Moreover, not all patients process strong EMG signals due to muscle damage and neuromuscular disorder. To address these issues, this paper explores different feature extraction techniques and machine learning and deep learning models for EEG and EMG signals classification and proposes a novel decision-level multisensor fusion technique to integrate EEG signals with EMG signals. This system retrieves effective information from both sources to understand and predict the desire of the user, and thus aid. By testing out the proposed technique on a publicly available WAY-EEG-GAL dataset, which contains EEG and EMG signals that were recorded simultaneously, we manage to conclude the feasibility and effectiveness of the novel system." @default.
- W4322152858 created "2023-02-27" @default.
- W4322152858 creator A5059081976 @default.
- W4322152858 creator A5066071965 @default.
- W4322152858 date "2023-01-01" @default.
- W4322152858 modified "2023-10-14" @default.
- W4322152858 title "Upper Limb Movement Recognition Utilising EEG and EMG Signals for Rehabilitative Robotics" @default.
- W4322152858 cites W1981173169 @default.
- W4322152858 cites W1986208911 @default.
- W4322152858 cites W1988702183 @default.
- W4322152858 cites W2012300725 @default.
- W4322152858 cites W2028674570 @default.
- W4322152858 cites W2044628302 @default.
- W4322152858 cites W2046166269 @default.
- W4322152858 cites W2091139114 @default.
- W4322152858 cites W2116308679 @default.
- W4322152858 cites W2134523593 @default.
- W4322152858 cites W2152093652 @default.
- W4322152858 cites W2156665896 @default.
- W4322152858 cites W2212952676 @default.
- W4322152858 cites W2327450850 @default.
- W4322152858 cites W2507680592 @default.
- W4322152858 cites W2535796366 @default.
- W4322152858 cites W2743161869 @default.
- W4322152858 cites W2766309231 @default.
- W4322152858 cites W2802460589 @default.
- W4322152858 cites W2808388357 @default.
- W4322152858 cites W2885562295 @default.
- W4322152858 cites W2923078152 @default.
- W4322152858 cites W2973843421 @default.
- W4322152858 cites W2991198759 @default.
- W4322152858 cites W2995576753 @default.
- W4322152858 cites W3022387615 @default.
- W4322152858 cites W3080798910 @default.
- W4322152858 cites W3092388469 @default.
- W4322152858 cites W3125572105 @default.
- W4322152858 cites W3164602583 @default.
- W4322152858 cites W3215846288 @default.
- W4322152858 cites W4206141316 @default.
- W4322152858 doi "https://doi.org/10.1007/978-3-031-28076-4_49" @default.
- W4322152858 hasPublicationYear "2023" @default.
- W4322152858 type Work @default.
- W4322152858 citedByCount "1" @default.
- W4322152858 crossrefType "book-chapter" @default.
- W4322152858 hasAuthorship W4322152858A5059081976 @default.
- W4322152858 hasAuthorship W4322152858A5066071965 @default.
- W4322152858 hasBestOaLocation W43221528582 @default.
- W4322152858 hasConcept C111919701 @default.
- W4322152858 hasConcept C153180895 @default.
- W4322152858 hasConcept C154945302 @default.
- W4322152858 hasConcept C15744967 @default.
- W4322152858 hasConcept C169760540 @default.
- W4322152858 hasConcept C2524010 @default.
- W4322152858 hasConcept C2777210771 @default.
- W4322152858 hasConcept C2777515770 @default.
- W4322152858 hasConcept C28490314 @default.
- W4322152858 hasConcept C33923547 @default.
- W4322152858 hasConcept C34413123 @default.
- W4322152858 hasConcept C41008148 @default.
- W4322152858 hasConcept C522805319 @default.
- W4322152858 hasConcept C71924100 @default.
- W4322152858 hasConcept C90509273 @default.
- W4322152858 hasConcept C98045186 @default.
- W4322152858 hasConcept C99508421 @default.
- W4322152858 hasConceptScore W4322152858C111919701 @default.
- W4322152858 hasConceptScore W4322152858C153180895 @default.
- W4322152858 hasConceptScore W4322152858C154945302 @default.
- W4322152858 hasConceptScore W4322152858C15744967 @default.
- W4322152858 hasConceptScore W4322152858C169760540 @default.
- W4322152858 hasConceptScore W4322152858C2524010 @default.
- W4322152858 hasConceptScore W4322152858C2777210771 @default.
- W4322152858 hasConceptScore W4322152858C2777515770 @default.
- W4322152858 hasConceptScore W4322152858C28490314 @default.
- W4322152858 hasConceptScore W4322152858C33923547 @default.
- W4322152858 hasConceptScore W4322152858C34413123 @default.
- W4322152858 hasConceptScore W4322152858C41008148 @default.
- W4322152858 hasConceptScore W4322152858C522805319 @default.
- W4322152858 hasConceptScore W4322152858C71924100 @default.
- W4322152858 hasConceptScore W4322152858C90509273 @default.
- W4322152858 hasConceptScore W4322152858C98045186 @default.
- W4322152858 hasConceptScore W4322152858C99508421 @default.
- W4322152858 hasLocation W43221528581 @default.
- W4322152858 hasLocation W43221528582 @default.
- W4322152858 hasLocation W43221528583 @default.
- W4322152858 hasOpenAccess W4322152858 @default.
- W4322152858 hasPrimaryLocation W43221528581 @default.
- W4322152858 hasRelatedWork W1508899372 @default.
- W4322152858 hasRelatedWork W2045758229 @default.
- W4322152858 hasRelatedWork W2116013011 @default.
- W4322152858 hasRelatedWork W2398963826 @default.
- W4322152858 hasRelatedWork W2767518918 @default.
- W4322152858 hasRelatedWork W2962829499 @default.
- W4322152858 hasRelatedWork W405964254 @default.
- W4322152858 hasRelatedWork W4231626925 @default.
- W4322152858 hasRelatedWork W4233452137 @default.
- W4322152858 hasRelatedWork W4254857216 @default.
- W4322152858 isParatext "false" @default.
- W4322152858 isRetracted "false" @default.