Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322201562> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W4322201562 abstract "Abstract The growing chronic diseases patients and the centralization of medical resources cause significant economic impact resulting in hospital visits, hospital readmission, and other healthcare costs. This paper proposes a scalable, big data, real-time health status prediction and analytical system to filter, manage, process, predict and store streaming health data. The proposed system uses Twitter as data source, Apache Kafka as ingestion tool, Apache Spark as computing engine, Apache Cassandra as storage engine and Apache Zeppelin as analytical tool. Proposed Spark Parallel Random Forest (SPRF) is used as data classifier. The idea is to use Twitter as a communication channel to transmit data generated by IoT medical devices to a system to perform analytics in a real-time fashion, using streaming. Thus, Twitter users tweet attributes related to health, Kafka streaming receives all desired tweets attributes and ingest them to Spark streaming. Here, a machine learning algorithm model is applied to predict health status and send back a response message through Kafka. The result will be saved into distributed database for historical data analysis and visualization. The system has been tested with a Heart disease dataset from UCI. RF classification performances are compared to other machine learning classifiers of Apache Spark MLlib library. To test the system scalability, a comparative study between execution time of RF on Spark environment and on WEKA for both training and application stages. The results show significant better performances of Spark cluster in terms of scalability and computing times." @default.
- W4322201562 created "2023-02-27" @default.
- W4322201562 creator A5021802342 @default.
- W4322201562 creator A5046020393 @default.
- W4322201562 creator A5091327058 @default.
- W4322201562 date "2023-02-27" @default.
- W4322201562 modified "2023-10-18" @default.
- W4322201562 title "A scalable and real-time system for disease prediction using big data processing" @default.
- W4322201562 doi "https://doi.org/10.21203/rs.3.rs-1567163/v2" @default.
- W4322201562 hasPublicationYear "2023" @default.
- W4322201562 type Work @default.
- W4322201562 citedByCount "0" @default.
- W4322201562 crossrefType "posted-content" @default.
- W4322201562 hasAuthorship W4322201562A5021802342 @default.
- W4322201562 hasAuthorship W4322201562A5046020393 @default.
- W4322201562 hasAuthorship W4322201562A5091327058 @default.
- W4322201562 hasBestOaLocation W43222015621 @default.
- W4322201562 hasConcept C119857082 @default.
- W4322201562 hasConcept C124101348 @default.
- W4322201562 hasConcept C154945302 @default.
- W4322201562 hasConcept C169258074 @default.
- W4322201562 hasConcept C199360897 @default.
- W4322201562 hasConcept C2781215313 @default.
- W4322201562 hasConcept C41008148 @default.
- W4322201562 hasConcept C48044578 @default.
- W4322201562 hasConcept C75684735 @default.
- W4322201562 hasConcept C77088390 @default.
- W4322201562 hasConcept C79158427 @default.
- W4322201562 hasConceptScore W4322201562C119857082 @default.
- W4322201562 hasConceptScore W4322201562C124101348 @default.
- W4322201562 hasConceptScore W4322201562C154945302 @default.
- W4322201562 hasConceptScore W4322201562C169258074 @default.
- W4322201562 hasConceptScore W4322201562C199360897 @default.
- W4322201562 hasConceptScore W4322201562C2781215313 @default.
- W4322201562 hasConceptScore W4322201562C41008148 @default.
- W4322201562 hasConceptScore W4322201562C48044578 @default.
- W4322201562 hasConceptScore W4322201562C75684735 @default.
- W4322201562 hasConceptScore W4322201562C77088390 @default.
- W4322201562 hasConceptScore W4322201562C79158427 @default.
- W4322201562 hasLocation W43222015621 @default.
- W4322201562 hasOpenAccess W4322201562 @default.
- W4322201562 hasPrimaryLocation W43222015621 @default.
- W4322201562 hasRelatedWork W1937348540 @default.
- W4322201562 hasRelatedWork W2189081352 @default.
- W4322201562 hasRelatedWork W2782700877 @default.
- W4322201562 hasRelatedWork W2803683285 @default.
- W4322201562 hasRelatedWork W2889616422 @default.
- W4322201562 hasRelatedWork W2891888092 @default.
- W4322201562 hasRelatedWork W2900588685 @default.
- W4322201562 hasRelatedWork W3158936693 @default.
- W4322201562 hasRelatedWork W3217778767 @default.
- W4322201562 hasRelatedWork W4321494985 @default.
- W4322201562 isParatext "false" @default.
- W4322201562 isRetracted "false" @default.
- W4322201562 workType "article" @default.