Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322217272> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4322217272 endingPage "457" @default.
- W4322217272 startingPage "448" @default.
- W4322217272 abstract "Background: Bovine viral diarrhea virus (BVDV) can cause diarrhea, abortion, and immunosuppression in cattle, imposing huge economic losses for the global cattle industry. The pathogenic and immune mechanisms of BVDV remain elusive. The development of a BVDV-gene knowledge base can provide clues to reveal the interaction of BVDV with host cells. However, the traditional method of manually establishing a knowledge base is time-consuming and inefficient. The method of developing a knowledge base based on deep learning has noticeably attracted scholars' attention recently. Objective: The study aimed to explore the substitution of deep learning for manual mining of BVDVrelated genes and to develop a knowledge graph of the relationship between BVDV and related genes. Methods: A deep learning-based biomedical knowledge graph development method was proposed, which used deep learning to mine biomedical knowledge, model BVDV and various gene concepts, and store data in a graphical database. First, the PubMed database was used as the data source and crawler technology to obtain abstract data on the relationship between BVDV and various host genes. Pretrained BioBERT model was used for biomedical named entity recognition to obtain all types of gene entities, and the pre-trained BERT model was utilized for relationship extraction to achieve the relationship between BVDV and various gene entities. Then, it was combined with manual proofreading to obtain structured triple data with high accuracy. Finally, the Neo4j graph database was used to store data and to develop the knowledge graph of the relationship between BVDV and related genes. Results: The results showed the obtainment of 71 gene entity types, including PRL4, MMP-7, TGIF1, etc. 9 relation types of BVDV and gene entities were obtained, including can downregulate expression of, can upregulate expression of, can suppress expression of, etc. The knowledge graph was developed using deep learning to mine biomedical knowledge combined with manual proofreading, which was faster and more efficient than the traditional method of establishing knowledge base manually, and the retrieval of semantic information by storing data in graph database was also more efficient. Conclusion: A BVDV-gene knowledge graph was preliminarily developed, which provided a basis for studying the interaction between BVDV and host cells." @default.
- W4322217272 created "2023-02-27" @default.
- W4322217272 creator A5000953925 @default.
- W4322217272 creator A5005078963 @default.
- W4322217272 creator A5008712174 @default.
- W4322217272 creator A5030783843 @default.
- W4322217272 creator A5053700975 @default.
- W4322217272 creator A5081989729 @default.
- W4322217272 date "2023-06-01" @default.
- W4322217272 modified "2023-10-14" @default.
- W4322217272 title "Development and Study of a Knowledge Graph for Retrieving the Relationship Between BVDV and Related Genes" @default.
- W4322217272 cites W1529533208 @default.
- W4322217272 cites W1538085078 @default.
- W4322217272 cites W2045791858 @default.
- W4322217272 cites W2047782770 @default.
- W4322217272 cites W2154142897 @default.
- W4322217272 cites W2250540014 @default.
- W4322217272 cites W2283196293 @default.
- W4322217272 cites W2515462165 @default.
- W4322217272 cites W2734608416 @default.
- W4322217272 cites W2805208465 @default.
- W4322217272 cites W2904726360 @default.
- W4322217272 cites W2911489562 @default.
- W4322217272 cites W2946690328 @default.
- W4322217272 cites W2949176808 @default.
- W4322217272 cites W2949311246 @default.
- W4322217272 cites W2970959783 @default.
- W4322217272 cites W2984452801 @default.
- W4322217272 cites W3022228001 @default.
- W4322217272 cites W3155548469 @default.
- W4322217272 cites W4305082132 @default.
- W4322217272 doi "https://doi.org/10.2174/1574893618666230224142324" @default.
- W4322217272 hasPublicationYear "2023" @default.
- W4322217272 type Work @default.
- W4322217272 citedByCount "0" @default.
- W4322217272 crossrefType "journal-article" @default.
- W4322217272 hasAuthorship W4322217272A5000953925 @default.
- W4322217272 hasAuthorship W4322217272A5005078963 @default.
- W4322217272 hasAuthorship W4322217272A5008712174 @default.
- W4322217272 hasAuthorship W4322217272A5030783843 @default.
- W4322217272 hasAuthorship W4322217272A5053700975 @default.
- W4322217272 hasAuthorship W4322217272A5081989729 @default.
- W4322217272 hasConcept C104317684 @default.
- W4322217272 hasConcept C108583219 @default.
- W4322217272 hasConcept C119857082 @default.
- W4322217272 hasConcept C120567893 @default.
- W4322217272 hasConcept C132525143 @default.
- W4322217272 hasConcept C154945302 @default.
- W4322217272 hasConcept C41008148 @default.
- W4322217272 hasConcept C4554734 @default.
- W4322217272 hasConcept C54355233 @default.
- W4322217272 hasConcept C80444323 @default.
- W4322217272 hasConcept C86803240 @default.
- W4322217272 hasConceptScore W4322217272C104317684 @default.
- W4322217272 hasConceptScore W4322217272C108583219 @default.
- W4322217272 hasConceptScore W4322217272C119857082 @default.
- W4322217272 hasConceptScore W4322217272C120567893 @default.
- W4322217272 hasConceptScore W4322217272C132525143 @default.
- W4322217272 hasConceptScore W4322217272C154945302 @default.
- W4322217272 hasConceptScore W4322217272C41008148 @default.
- W4322217272 hasConceptScore W4322217272C4554734 @default.
- W4322217272 hasConceptScore W4322217272C54355233 @default.
- W4322217272 hasConceptScore W4322217272C80444323 @default.
- W4322217272 hasConceptScore W4322217272C86803240 @default.
- W4322217272 hasFunder F4320322868 @default.
- W4322217272 hasFunder F4320331106 @default.
- W4322217272 hasIssue "5" @default.
- W4322217272 hasLocation W43222172721 @default.
- W4322217272 hasOpenAccess W4322217272 @default.
- W4322217272 hasPrimaryLocation W43222172721 @default.
- W4322217272 hasRelatedWork W3014300295 @default.
- W4322217272 hasRelatedWork W3164822677 @default.
- W4322217272 hasRelatedWork W4223943233 @default.
- W4322217272 hasRelatedWork W4225161397 @default.
- W4322217272 hasRelatedWork W4309045103 @default.
- W4322217272 hasRelatedWork W4312200629 @default.
- W4322217272 hasRelatedWork W4360585206 @default.
- W4322217272 hasRelatedWork W4364306694 @default.
- W4322217272 hasRelatedWork W4380075502 @default.
- W4322217272 hasRelatedWork W4380086463 @default.
- W4322217272 hasVolume "18" @default.
- W4322217272 isParatext "false" @default.
- W4322217272 isRetracted "false" @default.
- W4322217272 workType "article" @default.