Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322422922> ?p ?o ?g. }
- W4322422922 endingPage "711" @default.
- W4322422922 startingPage "700" @default.
- W4322422922 abstract "ConspectusWe often teach or are taught in our freshman courses that there are three phases of matter─gas, liquid and solid─where the ordering reflects increasing complexity and strength of interaction between the molecular constituents. But arguably there is also a fascinating additional phase of matter associated with the microscopically thin interface (<10 molecules thick) between the gas and liquid, which is still poorly understood and yet plays a crucial role in fields ranging from chemistry of the marine boundary layer and atmospheric chemistry of aerosols to the passage of O2 and CO2 through alveolar sacs in our lungs. The work in this Account provides insights into three challenging new directions for the field, each embracing a rovibronically quantum-state-resolved perspective. Specifically, we exploit the powerful tools of chemical physics and laser spectroscopy to pose two fundamental questions. (i) At the microscopic level, do molecules in all internal quantum-states (e.g., vibrational, rotational, electronic) colliding with the interface stick with unit probability? (ii) Can reactive, scattering, and/or evaporating molecules at the gas-liquid interface avoid collisions with other species and thereby be observed in a truly nascent collision-free distribution of internal degrees of freedom? To help address these questions, we present studies in three different areas: (i) reactive scattering dynamics of F atoms with wetted-wheel gas-liquid interfaces, (ii) inelastic scattering of HCl from self-assembled monolayers (SAMs) via resonance-enhanced photoionization (REMPI)/velocity map imaging (VMI) methods, and (iii) quantum-state-resolved evaporation dynamics of NO at the gas-water interface. As a recurring theme, we find that molecular projectiles reactively, inelastically, or evaporatively scatter from the gas-liquid interface into internal quantum-state distributions substantially out of equilibrium with respect to the bulk liquid temperatures (TS). By detailed balance considerations, the data unambiguously indicate that even simple molecules exhibit rovibronic state dependences to how they stick to and eventually solvate into the gas-liquid interface. Such results serve to underscore the importance of quantum mechanics and nonequilibrium thermodynamics in energy transfer and chemical reactions at the gas-liquid interface. This nonequilibrium behavior may well make this rapidly emergent field of chemical dynamics at gas-liquid interfaces more complicated but even more interesting targets for further experimental/theoretical exploration." @default.
- W4322422922 created "2023-02-28" @default.
- W4322422922 creator A5013900606 @default.
- W4322422922 creator A5049220984 @default.
- W4322422922 creator A5084872177 @default.
- W4322422922 creator A5085985846 @default.
- W4322422922 date "2023-02-27" @default.
- W4322422922 modified "2023-10-11" @default.
- W4322422922 title "Nonequilibrium Scattering/Evaporation Dynamics at the Gas–Liquid Interface: Wetted Wheels, Self-Assembled Monolayers, and Liquid Microjets" @default.
- W4322422922 cites W1965287043 @default.
- W4322422922 cites W1968655141 @default.
- W4322422922 cites W1973877824 @default.
- W4322422922 cites W1974564935 @default.
- W4322422922 cites W1977528311 @default.
- W4322422922 cites W1978809458 @default.
- W4322422922 cites W1983122807 @default.
- W4322422922 cites W1987724500 @default.
- W4322422922 cites W1994900964 @default.
- W4322422922 cites W2000022645 @default.
- W4322422922 cites W2002371699 @default.
- W4322422922 cites W2003358906 @default.
- W4322422922 cites W2005633276 @default.
- W4322422922 cites W2007888691 @default.
- W4322422922 cites W2009997520 @default.
- W4322422922 cites W2012259887 @default.
- W4322422922 cites W2014227433 @default.
- W4322422922 cites W2017288035 @default.
- W4322422922 cites W2027076693 @default.
- W4322422922 cites W2029447494 @default.
- W4322422922 cites W2033308968 @default.
- W4322422922 cites W2038607185 @default.
- W4322422922 cites W2040043656 @default.
- W4322422922 cites W2044474247 @default.
- W4322422922 cites W2044546151 @default.
- W4322422922 cites W2051630390 @default.
- W4322422922 cites W2051794686 @default.
- W4322422922 cites W2054927320 @default.
- W4322422922 cites W2058068992 @default.
- W4322422922 cites W2064089391 @default.
- W4322422922 cites W2066872472 @default.
- W4322422922 cites W2070218050 @default.
- W4322422922 cites W2070530353 @default.
- W4322422922 cites W2072566627 @default.
- W4322422922 cites W2074105248 @default.
- W4322422922 cites W2076498583 @default.
- W4322422922 cites W2078953307 @default.
- W4322422922 cites W2087609443 @default.
- W4322422922 cites W2090813727 @default.
- W4322422922 cites W2091568445 @default.
- W4322422922 cites W2134819724 @default.
- W4322422922 cites W2153927649 @default.
- W4322422922 cites W2156834932 @default.
- W4322422922 cites W2158635255 @default.
- W4322422922 cites W2164902852 @default.
- W4322422922 cites W2166603911 @default.
- W4322422922 cites W2185386454 @default.
- W4322422922 cites W2301583637 @default.
- W4322422922 cites W2318013068 @default.
- W4322422922 cites W2329061231 @default.
- W4322422922 cites W2341559844 @default.
- W4322422922 cites W2342896988 @default.
- W4322422922 cites W2466118667 @default.
- W4322422922 cites W2470480624 @default.
- W4322422922 cites W2536306389 @default.
- W4322422922 cites W2743564331 @default.
- W4322422922 cites W2803616985 @default.
- W4322422922 cites W2809514709 @default.
- W4322422922 cites W2909185482 @default.
- W4322422922 cites W2913432856 @default.
- W4322422922 cites W3112584491 @default.
- W4322422922 doi "https://doi.org/10.1021/acs.accounts.2c00823" @default.
- W4322422922 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36848588" @default.
- W4322422922 hasPublicationYear "2023" @default.
- W4322422922 type Work @default.
- W4322422922 citedByCount "2" @default.
- W4322422922 countsByYear W43224229222023 @default.
- W4322422922 crossrefType "journal-article" @default.
- W4322422922 hasAuthorship W4322422922A5013900606 @default.
- W4322422922 hasAuthorship W4322422922A5049220984 @default.
- W4322422922 hasAuthorship W4322422922A5084872177 @default.
- W4322422922 hasAuthorship W4322422922A5085985846 @default.
- W4322422922 hasConcept C120665830 @default.
- W4322422922 hasConcept C121332964 @default.
- W4322422922 hasConcept C145148216 @default.
- W4322422922 hasConcept C158749347 @default.
- W4322422922 hasConcept C159467904 @default.
- W4322422922 hasConcept C171250308 @default.
- W4322422922 hasConcept C178790620 @default.
- W4322422922 hasConcept C184779094 @default.
- W4322422922 hasConcept C185592680 @default.
- W4322422922 hasConcept C191486275 @default.
- W4322422922 hasConcept C192562407 @default.
- W4322422922 hasConcept C198291218 @default.
- W4322422922 hasConcept C32909587 @default.
- W4322422922 hasConcept C41999313 @default.
- W4322422922 hasConcept C61441594 @default.
- W4322422922 hasConcept C62520636 @default.
- W4322422922 hasConcept C7070889 @default.