Matches in SemOpenAlex for { <https://semopenalex.org/work/W4322495340> ?p ?o ?g. }
- W4322495340 endingPage "107327482311595" @default.
- W4322495340 startingPage "107327482311595" @default.
- W4322495340 abstract "Introduction In patients affected by epithelial ovarian cancer (EOC) complete cytoreduction (CC) has been associated with higher survival outcomes. Artificial intelligence (AI) systems have proved clinical benefice in different areas of healthcare. Objective To systematically assemble and analyze the available literature on the use of AI in patients affected by EOC to evaluate its applicability to predict CC compared to traditional statistics. Material and Methods Data search was carried out through PubMed, Scopus, Ovid MEDLINE, Cochrane Library, EMBASE, international congresses and clinical trials. The main search terms were: Artificial Intelligence AND surgery/cytoreduction AND ovarian cancer. Two authors independently performed the search by October 2022 and evaluated the eligibility criteria. Studies were included when data about Artificial Intelligence and methodological data were detailed. Results A total of 1899 cases were analyzed. Survival data were reported in 2 articles: 92% of 5-years overall survival (OS) and 73% of 2-years OS. The median area under the curve (AUC) resulted 0,62. The model accuracy for surgical resection reported in two articles reported was 77,7% and 65,8% respectively while the median AUC was 0,81. On average 8 variables were inserted in the algorithms. The most used parameters were age and Ca125. Discussion AI revealed greater accuracy compared against the logistic regression models data. Survival predictive accuracy and AUC were lower for advanced ovarian cancers. One study analyzed the importance of factors predicting CC in recurrent epithelial ovarian cancer and disease free interval, retroperitoneal recurrence, residual disease at primary surgery and stage represented the main influencing factors. Surgical Complexity Scores resulted to be more useful in the algorithms than pre-operating imaging. Conclusion AI showed better prognostic accuracy if compared to conventional algorithms. However further studies are needed to compare the impact of different AI methods and variables and to provide survival informations." @default.
- W4322495340 created "2023-02-28" @default.
- W4322495340 creator A5003578520 @default.
- W4322495340 creator A5012619778 @default.
- W4322495340 creator A5042742009 @default.
- W4322495340 creator A5060565441 @default.
- W4322495340 creator A5070080691 @default.
- W4322495340 date "2023-02-27" @default.
- W4322495340 modified "2023-10-14" @default.
- W4322495340 title "The Use of Artificial Intelligence for Complete Cytoreduction Prediction in Epithelial Ovarian Cancer: A Narrative Review" @default.
- W4322495340 cites W134111903 @default.
- W4322495340 cites W1975183710 @default.
- W4322495340 cites W1981448119 @default.
- W4322495340 cites W1984535832 @default.
- W4322495340 cites W1987047208 @default.
- W4322495340 cites W1987844727 @default.
- W4322495340 cites W1993928534 @default.
- W4322495340 cites W2018797399 @default.
- W4322495340 cites W2038328856 @default.
- W4322495340 cites W2041178952 @default.
- W4322495340 cites W2043439115 @default.
- W4322495340 cites W2045030606 @default.
- W4322495340 cites W2045652619 @default.
- W4322495340 cites W2055144065 @default.
- W4322495340 cites W2056092926 @default.
- W4322495340 cites W2060102581 @default.
- W4322495340 cites W2063684969 @default.
- W4322495340 cites W2065999163 @default.
- W4322495340 cites W2080057426 @default.
- W4322495340 cites W2082851035 @default.
- W4322495340 cites W2099521317 @default.
- W4322495340 cites W2168859261 @default.
- W4322495340 cites W2171273724 @default.
- W4322495340 cites W2341194932 @default.
- W4322495340 cites W2491646014 @default.
- W4322495340 cites W2507190305 @default.
- W4322495340 cites W2588945335 @default.
- W4322495340 cites W2591954457 @default.
- W4322495340 cites W2605456582 @default.
- W4322495340 cites W2612149813 @default.
- W4322495340 cites W2718759517 @default.
- W4322495340 cites W2766708596 @default.
- W4322495340 cites W2801190862 @default.
- W4322495340 cites W2801780356 @default.
- W4322495340 cites W2802857884 @default.
- W4322495340 cites W2903967525 @default.
- W4322495340 cites W2910890213 @default.
- W4322495340 cites W2918934031 @default.
- W4322495340 cites W2938809977 @default.
- W4322495340 cites W2945357020 @default.
- W4322495340 cites W2984336612 @default.
- W4322495340 cites W3000464090 @default.
- W4322495340 cites W3031621470 @default.
- W4322495340 cites W3084408880 @default.
- W4322495340 cites W3090706813 @default.
- W4322495340 cites W3135376158 @default.
- W4322495340 cites W3208839972 @default.
- W4322495340 cites W4223646967 @default.
- W4322495340 cites W4226453968 @default.
- W4322495340 cites W4281401157 @default.
- W4322495340 doi "https://doi.org/10.1177/10732748231159553" @default.
- W4322495340 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36847148" @default.
- W4322495340 hasPublicationYear "2023" @default.
- W4322495340 type Work @default.
- W4322495340 citedByCount "0" @default.
- W4322495340 crossrefType "journal-article" @default.
- W4322495340 hasAuthorship W4322495340A5003578520 @default.
- W4322495340 hasAuthorship W4322495340A5012619778 @default.
- W4322495340 hasAuthorship W4322495340A5042742009 @default.
- W4322495340 hasAuthorship W4322495340A5060565441 @default.
- W4322495340 hasAuthorship W4322495340A5070080691 @default.
- W4322495340 hasBestOaLocation W43224953401 @default.
- W4322495340 hasConcept C121608353 @default.
- W4322495340 hasConcept C126322002 @default.
- W4322495340 hasConcept C143998085 @default.
- W4322495340 hasConcept C146357865 @default.
- W4322495340 hasConcept C151730666 @default.
- W4322495340 hasConcept C151956035 @default.
- W4322495340 hasConcept C17744445 @default.
- W4322495340 hasConcept C199539241 @default.
- W4322495340 hasConcept C2776478404 @default.
- W4322495340 hasConcept C2779134260 @default.
- W4322495340 hasConcept C2779473830 @default.
- W4322495340 hasConcept C2780427987 @default.
- W4322495340 hasConcept C2992773878 @default.
- W4322495340 hasConcept C44249647 @default.
- W4322495340 hasConcept C71924100 @default.
- W4322495340 hasConcept C86803240 @default.
- W4322495340 hasConceptScore W4322495340C121608353 @default.
- W4322495340 hasConceptScore W4322495340C126322002 @default.
- W4322495340 hasConceptScore W4322495340C143998085 @default.
- W4322495340 hasConceptScore W4322495340C146357865 @default.
- W4322495340 hasConceptScore W4322495340C151730666 @default.
- W4322495340 hasConceptScore W4322495340C151956035 @default.
- W4322495340 hasConceptScore W4322495340C17744445 @default.
- W4322495340 hasConceptScore W4322495340C199539241 @default.
- W4322495340 hasConceptScore W4322495340C2776478404 @default.
- W4322495340 hasConceptScore W4322495340C2779134260 @default.